Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow\left(1-\frac{sinx}{cosx}\right)\left(1+sinx\right)=1+\frac{sinx}{cosx}\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(1+sinx\right)=sinx+cosx\)
\(\Leftrightarrow cosx+sinx.cosx-sinx-sin^2x=sinx+cosx\)
\(\Leftrightarrow sin^2x+2sinx-sinx.cosx=0\)
\(\Leftrightarrow sinx\left(sinx-cosx+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\sinx-cosx=-2\left(1\right)\end{matrix}\right.\)
Xét \(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-2\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\sqrt{2}< -1\) (vô nghiệm)
a/ ĐKXĐ: \(sin4x\ne0\)
\(\frac{sinx}{cosx}+\frac{cos2x}{sin2x}=\frac{2cos4x}{sin4x}\)
\(\Leftrightarrow2sin^2x.cos2x+2cos^22x=2cos4x\)
\(\Leftrightarrow\left(1-cos2x\right)cos2x+2cos^22x=4cos^22x-2\)
\(\Leftrightarrow3cos^22x-cos2x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\left(l\right)\\cos2x=-\frac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow2x=\pm arccos\left(-\frac{2}{3}\right)+k2\pi\)
\(\Leftrightarrow x=\pm\frac{1}{2}arccos\left(-\frac{2}{3}\right)+k\pi\)
Đểphương trình có nghĩa thì \(\left\{{}\begin{matrix}x\ne\dfrac{\Pi}{2}+k\Pi\\\tan x< >\sin x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\Pi}{2}+k\Pi\\\dfrac{\sin x}{\cos x}\ne\sin x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\Pi}{2}+k\Pi\\\sin x\left(\cos x-1\right)< >0\end{matrix}\right.\Leftrightarrow x\notin\left\{\dfrac{\Pi}{2}+k\Pi;k\Pi;k2\Pi\right\}\)
1: tan x=3 nên sin x/cosx=3
=>sin x=3*cosx
\(B=\dfrac{2\cdot sinx-3cosx}{sinx+cosx}=\dfrac{2\cdot3\cdot cosx-3cosx}{3cosx+cosx}\)
\(=\dfrac{2\cdot3-3}{3+1}=\dfrac{3}{4}\)
2: tan x=-1 nên sin x/cosx=-1
=>sinx=-cosx
\(I=\dfrac{4\cdot\left(-cosx\right)^3+\left(cosx\right)^3}{-cosx+3\cdot cosx}=\dfrac{-3\cdot cos^3x}{2cosx}=-\dfrac{3}{2}\cdot cos^2x\)
\(1+tan^2x=\dfrac{1}{cos^2x}\)
=>\(\dfrac{1}{cos^2x}=1+1=2\)
=>\(cos^2x=\dfrac{1}{2}\)
=>I=-3/2*1/2=-3/4
a: TXĐ: D=R
Với mọi x thuộc D thì -x cũng thuộc D
\(f\left(-x\right)=-x\cdot cos\left(-x\right)=-x\cdot cosx=-f\left(x\right)\)
=>f(x) lẻ
b: TXĐ: D=R
Với mọi x thuộc D thì -x cũng thuộc D
\(f\left(-x\right)=5\cdot sin^2\left(-x\right)+1=5\cdot sin^2x+1=f\left(x\right)\)
=>f(x) chẵn
c: TXĐ: D=R
Với mọi x thuộc D thì -x cũng thuộc D
\(f\left(-x\right)=sin\left(-x\right)\cdot cos\left(-x\right)=-sinx\cdot cosx=-f\left(x\right)\)
=>f(x) lẻ