K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

\(A=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+\dfrac{1}{2^5}-\dfrac{1}{2^6}\)

\(2A=1-\dfrac{1}{2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}-\dfrac{1}{2^5}\)

\(2A+A=\left(1-\dfrac{1}{2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}-\dfrac{1}{2^5}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+\dfrac{1}{2^5}-\dfrac{1}{2^6}\right)\)

\(3A=1-\dfrac{1}{2^6}\Leftrightarrow A=\dfrac{1}{3}-\dfrac{1}{3.2^6}< \dfrac{1}{3}\left(đpcm\right)\)

25 tháng 3 2022

a,2/3 + 4/-5 x 20/16 =-1/3

b,(1/3+4/6).(2/7+9/14)=13/14

c,(2/3 - 3/4).(1/2- -3/5)=-11/120

25 tháng 3 2022

a,2/3 + 4/-5 x 20/16
=2/3-1
=-1/3
b,(1/3+4/6).(2/7+9/14)
=1.13/14
=13/14
c,(2/3 - 3/4).(1/2- -3/5)
=-1/12.-1/10
=1/120

6 tháng 8 2018

b) Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{20}}\)

\(\Rightarrow A=1-\frac{1}{2^{20}}< 1\left(đpcm\right)\)

c) ta có: \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{10}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{7}{10}\) ( có 7 số 1/10)

\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}=\frac{9}{19}\)  ( có 9 số 1/19)

\(\Rightarrow\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}>\frac{7}{10}+\frac{9}{10}=1\frac{33}{190}>1\)

=> đ p c m

6 tháng 8 2018

d) \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(=1-\frac{1}{46}< 1\)

=> đ p c m

e) ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{7^2}< \frac{1}{6.7};\frac{1}{8^2}< \frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{7^2}+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}+\frac{1}{7.8}\)

                                                                                 \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

                                                                                 \(=1-\frac{1}{8}< 1\)

=> đ p c m

câu a mk ko bk, xl bn nhìu! :(

17 tháng 6 2017

a)y=5/6

b)y=11/4

17 tháng 6 2017

\(a\left(\frac{1}{2}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{10}\right).y=\frac{1}{3}\)
\(\left(\frac{1}{2}-\frac{1}{10}\right).y=\frac{1}{3}\)

\(\frac{2}{5}.y=\frac{1}{3}\)

      \(y=\frac{1}{3}:\frac{2}{5}\)

     \(y=\frac{5}{6}\)

\(b,\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)

     \(\left(\frac{1}{1}-\frac{1}{11}\right).y=\frac{2}{3}\)

      \(\frac{10}{11}.y=\frac{2}{3}\)

              \(y=\frac{2}{3}:\frac{10}{11}\)

               \(y=\frac{22}{30}\)

28 tháng 8 2020

1/ (x+1)(y+2) =5

Do x;y thuộc N nên x+1 ; y+2 cũng thuộc N

\(TH1:\Leftrightarrow\hept{\begin{cases}x+1=1\\y+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-1\\y=5-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=3\end{cases}}}\\\)

\(TH2:\Leftrightarrow\hept{\begin{cases}x+1=5\\y+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5-1\\y=1-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=-1\end{cases}}}\)

x04
y3 -1

mà x;y\(\in\)N nên x;y=0;3

Các bài khác bạn làm tương tự nha! (vì mk viết rất chậm )

28 tháng 8 2020

\(\left(x+1\right)\left(y+3\right)=6\)

\(\Leftrightarrow x+1;y+3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

x + 11-12-23-36-6
y + 36-63-32-21-1
x0-21-32-45-7
y3-90-6-1-5-2-4

Đặt \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}=A\)

ta có :\(\frac{1}{2^2}=\frac{1}{2\cdot2}=\frac{1}{4}\)

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(...\)

\(\frac{1}{1990^2}=\frac{1}{1990\cdot1990}< \frac{1}{1989\cdot1990}\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2\cdot3}+...+\frac{1}{1989\cdot1990}\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1989}-\frac{1}{1990}\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)

\(\Rightarrow A< \frac{3}{4}\left(ĐPCM\right)\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{3}{4}\)

hk tốt #

2 tháng 5 2019

Ta có \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{1990^2}< \frac{1}{1989.1990}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)

                                                                     \(< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)

                                                                    \(< \frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{3}{4}\)

\(\Rightarrow\)Bài toán được chứng minh

6 tháng 3 2017

A=1/57

B=1/41

100%

9 tháng 8 2023

a) \(4\dfrac{3}{8}+5\dfrac{2}{3}\)

\(=\dfrac{35}{8}+\dfrac{17}{3}\)

\(=\dfrac{105}{24}+\dfrac{136}{24}\)

\(=\dfrac{241}{24}\)

b) \(2\dfrac{3}{8}+1\dfrac{1}{4}+3\dfrac{6}{7}\)

\(=\dfrac{19}{8}+\dfrac{5}{4}+\dfrac{27}{7}\)

\(=\dfrac{29}{8}+\dfrac{27}{7}\)

\(=\dfrac{419}{56}\)

c) \(2\dfrac{3}{8}-1\dfrac{1}{4}+5\dfrac{1}{3}\)

\(=\dfrac{19}{8}-\dfrac{5}{4}+\dfrac{16}{3}\)

\(=\dfrac{9}{8}+\dfrac{16}{3}\)

\(=\dfrac{155}{24}\)

d) \(\left(\dfrac{5}{2}+\dfrac{1}{3}\right):\left(1-\dfrac{1}{2}\right)\)

\(=\dfrac{17}{6}:\dfrac{1}{2}\)

\(=\dfrac{17}{6}\cdot2\)

\(=\dfrac{17}{3}\)

e) \(\left(\dfrac{5}{2}-\dfrac{1}{3}\right)\cdot\dfrac{9}{2}-\dfrac{6}{7}\)

\(=\dfrac{13}{6}\cdot\dfrac{9}{2}-\dfrac{6}{7}\)

\(=\dfrac{39}{4}-\dfrac{6}{7}\)

\(=\dfrac{249}{28}\)

a: =4+3/8+5+2/3

=9+9/24+16/24

=9+25/24

=216/24+25/24=241/24

b: \(=\dfrac{19}{8}+\dfrac{5}{4}+\dfrac{27}{7}=\dfrac{19+10}{8}+\dfrac{27}{7}\)

=27/7+29/8

=419/56

c: =2+3/8-1-1/4+5+1/3

=6+3/8-1/4+1/3

=6+3/8+1/12

=144/24+9/24+2/24

=155/24

d: =(15/6+2/6):1/2

=17/6*2

=17/3

e: =(15/6-2/6)*9/2-6/7

=13/6*9/2-6/7

=117/12-6/7

=249/28

8 tháng 8 2023

a) \(12\dfrac{1}{3}-\left(3\dfrac{3}{4}+4\dfrac{3}{4}\right)=\dfrac{37}{3}-\left(\dfrac{15}{4}+\dfrac{19}{4}\right)\)

\(=\dfrac{37}{3}-\dfrac{34}{4}=\dfrac{37}{3}-\dfrac{17}{2}=\dfrac{74}{6}-\dfrac{51}{6}=\dfrac{23}{6}\)

b) \(3\dfrac{5}{6}+2\dfrac{1}{6}.6=\dfrac{23}{6}+\dfrac{13}{6}.6=\dfrac{23}{6}+\dfrac{78}{6}=\dfrac{101}{6}\)

c) \(3\dfrac{1}{2}+4\dfrac{5}{7}-5\dfrac{5}{14}=\dfrac{7}{2}+\dfrac{33}{7}-\dfrac{75}{14}=\dfrac{49}{14}+\dfrac{66}{14}-\dfrac{75}{14}=-\dfrac{92}{14}=-\dfrac{46}{7}\)

d) \(4\dfrac{1}{2}+\dfrac{1}{2}:5\dfrac{1}{2}=\dfrac{9}{2}+\dfrac{1}{2}:\dfrac{11}{2}=\dfrac{9}{2}+\dfrac{1}{2}.\dfrac{2}{11}=\dfrac{9}{2}+\dfrac{1}{11}=\dfrac{99}{22}+\dfrac{2}{22}=\dfrac{101}{22}\)

a. \(12\dfrac{1}{3}-\left(3\dfrac{3}{4}+4\dfrac{3}{4}\right)=\dfrac{37}{3}-\left(\dfrac{15}{4}+\dfrac{19}{4}\right)\)

\(=\dfrac{37}{3}-\dfrac{34}{4}=\dfrac{23}{6}\)

\(b.3\dfrac{5}{6}+2\dfrac{1}{6}.6=\dfrac{23}{6}+13=\dfrac{101}{6}\)

\(c.3\dfrac{1}{2}+4\dfrac{5}{7}-5\dfrac{5}{14}=\dfrac{7}{2}+\dfrac{33}{7}-\dfrac{75}{14}=\dfrac{20}{7}\)

d  \(4\dfrac{1}{2}+\dfrac{1}{2}:5\dfrac{1}{2}\)

\(=\dfrac{9}{2}+\dfrac{1}{2}:\dfrac{11}{2}\)

\(=\dfrac{9}{2}+\dfrac{1}{11}\)

\(=\dfrac{101}{22}\)