K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

thay tan a  = sina / cos a vào VT ta có 

         \(\frac{1-tana}{1+tana}=\frac{1-\frac{sina}{cosa}}{1+\frac{sina}{cosa}}=\frac{\frac{cosa-sina}{cosa}}{\frac{cosa+sina}{cosa}}=\frac{cosa-sina}{cosa+sina}\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

a) \(\cot ^2a+1=\left(\frac{\cos a}{\sin a}\right)^2+1=\frac{\cos ^2a+\sin ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)

b)

\(\tan ^2a+1=\left(\frac{\sin a}{\cos a}\right)^2+1=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)

c) Đề bài sai.

\(\sin ^4a+\cos ^2a=\sin ^2a.\sin ^2a+\cos ^2a\)

\(=\sin ^2a(1-\cos ^2a)+\cos ^2a\)

\(\sin ^2a+\cos ^2a-\sin ^2a\cos ^2a=1-\sin ^2a\cos ^2a\)

d)

\(\frac{1-4\sin ^2a\cos ^2a}{(\sin a+\cos a)^2}=\frac{1-(2\sin a\cos a)^2}{\sin ^2a+2\sin a\cos a+\cos ^2a}=\frac{(1-2\sin a\cos a)(1+2\sin a\cos a)}{1+2\sin a\cos a}\)

\(=1-2\sin a\cos a\)

e) ĐK tồn tại tan là $\cos x\neq 0$

\(\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\tan a\cos a\)

Ta có:

\(\frac{2\sin a\cos a-1}{\cos ^2a-\sin ^2a}=\frac{1-2\sin a\cos a}{\sin ^2a-\cos ^2a}=\frac{\cos ^2a+\sin ^2a-2\sin a\cos a}{(\sin a-\cos a)(\sin a+\cos a)}\)

\(=\frac{(\sin a-\cos a)^2}{(\sin a-\cos a)(\sin a+\cos a)}=\frac{\sin a-\cos a}{\sin a+\cos a}\)

\(=\frac{\tan a\cos a-\cos a}{\tan a\cos a+\cos a}=\frac{\cos a(\tan a-1)}{\cos a(\tan a+1)}\)\(=\frac{\tan a-1}{\tan a+1}\) (đpcm)

7 tháng 8 2017

~ ~ ~ Áp dụng đẳng thức \(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\) ~ ~ ~

a)

\(\left(\sin\alpha+\cos\alpha\right)^2-2\sin\alpha\cos\alpha-1\)

\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\right)\)

\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)^2\)

= 0

b)

\(\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+1\)

\(=\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\)

\(=\left(\sin\alpha-\cos\alpha\right)^2+\left(\sin\alpha+\cos\alpha\right)^2\)

\(=2\left(\sin^2\alpha+\cos^2\alpha\right)\)

= 2

c)

\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2+2\)

\(=2\left(\sin^2\alpha+\cos^2\alpha\right)+2\)

= 4

d)

\(\sin^2\alpha\cot^2\alpha+\cos^2\alpha\tan^2\alpha\)

\(=\left(\sin\times\dfrac{\cos}{\sin}\right)^2+\left(\cos\times\dfrac{\sin}{\cos}\right)^2\)

= 1

NV
1 tháng 9 2020

\(A=\frac{sina+cosa}{cosa-sina}=\frac{\frac{sina}{cosa}+\frac{cosa}{cosa}}{\frac{cosa}{cosa}-\frac{sina}{cosa}}=\frac{tana+1}{1-tana}=\frac{5+1}{1-5}=...\)

\(B=\frac{8cos^3a-2sin^3a+cosa}{2cosa-sin^3a}\) để làm được câu này chỉ cần nhớ đến công thức: \(\frac{1}{cos^2a}=1+tan^2a\)

\(B=\frac{\frac{8cos^3a}{cos^3a}-\frac{2sin^3a}{cos^3a}+\frac{cosa}{cosa}.\frac{1}{cos^2a}}{\frac{2cosa}{cosa}.\frac{1}{cos^2a}-\frac{sin^3a}{cos^3a}}=\frac{8-2tan^3a+1+tan^2a}{2\left(1+tan^2a\right)-tan^3a}=\frac{9-2tan^3a+tan^2a}{2+2tan^2a-tan^3a}=\frac{9-2.5^3+5^2}{2+2.5^2-5^3}=...\)

20 tháng 9 2017
Câu a dùng sin^2a+cos^2a=1 và a^2-b^2=(a-b)(a+b). Kết quả=sin^2 Câu b tương tự=2 Câu c tách sina ra ngoài và được sin^3a Câu d dùng hđt a^2+2ab+b^2=(a+b)^2 và kết quả là 1 Câu e tách tan^2a ra ngoài và được tan^2*cos^2 mà tana=sina/cosa. Kết quả bằng sin^2a Câu f có tan^2*cos^2=sin^2a nên kết quả câu f=1 Chú thích chút ^ là mũ, a là alpha,* là nhân
20 tháng 4 2017

Tự chứng minh từng cái này rồi suy ra cái đó nhé b.

Ta có: \(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}-sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}\)

Tương tự ta suy ra: 

\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}sin\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+3sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\left(1\right)\)

Tiếp theo chứng minh:

\(2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=\frac{cosA+cosB+cosC-1}{2}\left(2\right)\)

\(sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}\left(3\right)\)

\(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\left(4\right)\)

Từ (1), (2), (3), (4) suy được điều phải chứng minh

18 tháng 4 2017

ko hiểu ( vì em mới học lớp 6)

19 tháng 8 2021

\(=\frac{\sin^2a}{\sin a-\cos a}-\frac{\sin a+\cos a}{\frac{\sin^2a}{\cos^2a}-1}=\)

\(=\frac{\sin^2a}{\sin a-\cos a}-\frac{\cos^2a\left(\sin a+\cos a\right)}{\sin^2a-\cos^2a}=\)

\(=\frac{\sin^2a\left(\sin a+\cos a\right)-\cos^2a\left(\sin a+\cos a\right)}{\sin^2a-\cos^2a}=\)

\(=\frac{\left(\sin a+\cos a\right)\left(\sin^2a-\cos^2a\right)}{\sin^2a-\cos^2a}=\sin a+\cos a\left(dpcm\right)\)