Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{4}\right)\times....\times\left(1+\frac{1}{98}\right)\times\left(1+\frac{1}{99}\right)\)
\(=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times....\times\frac{99}{98}\times\frac{100}{99}\)
\(=\frac{3\times4\times5\times...\times99\times100}{2\times3\times4\times....\times98\times99}\)
\(=\frac{100}{2}=50\)
(1+1/2).(1+1/3).(1+1/4)....(1+1/98).(1+1/99)
=3/2.4/3.5/4...99/98.100/99
=3.4.5....99.100/2.3.4....98.99
=100/2
=50
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{99}{98}.\frac{100}{99}=\frac{3.4.5....99.100}{2.3.4...98.99}=\frac{100}{2}=50\)
=> A = 50
\(x\)là dấu nhân hả bạn? Nếu vậy thì mk làm cho nhé
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.......\cdot\frac{17}{18}\cdot\frac{18}{19}\cdot\frac{19}{20}=\frac{1}{20}\)
Vậy \(A=\frac{1}{20}\)
\(B=1\frac{1}{2}\cdot1\frac{1}{3}\cdot1\frac{1}{4}\cdot........\cdot1\frac{1}{2005}\cdot1\frac{1}{2006}\cdot1\frac{1}{2007}\)
\(B=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot......\cdot\frac{2006}{2005}\cdot\frac{2007}{2006}\cdot\frac{2008}{2007}=\frac{2008}{2}=1004\)
Vậy \(B=1004\)
DẤU CHẤM LÀ DẤU NHÂN
a,
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)
b, \(1\frac{1}{2}.1\frac{1}{3}....1\frac{1}{2017}=\frac{3}{2}.\frac{4}{3}....\frac{2018}{2017}=\frac{2018}{2}=1009\)
\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)x\left(1-\frac{1}{6}\right)\)
= \(\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x\frac{5}{6}\)
=\(\frac{1x2x3x4x5}{2x3x4x5x6}\)
Loại 2x3x4x5 vì cả 2 vế cùng có
=\(\frac{1}{6}\)
\(\left(1-\frac{1}{2}\right)\) x \(\left(1-\frac{1}{3}\right)\)x \(\left(1-\frac{1}{4}\right)\)x \(\left(1-\frac{1}{5}\right)\)x \(\left(1-\frac{1}{6}\right)\)
\(=\)\(\frac{1}{2}\) x \(\frac{2}{3}\)x \(\frac{3}{4}\)x \(\frac{4}{5}\)x \(\frac{5}{6}\)
\(=\)\(\frac{1}{6}\)
=\(\frac{1}{2}x\frac{2}{3}x...x\frac{2017}{2018}\)
=\(\frac{1}{2018}\)
bạn trừ ra là đc
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{2017}\right)\cdot\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)
\(=\frac{1\cdot2\cdot3\cdot....\cdot2016\cdot2017}{2\cdot3\cdot4\cdot....\cdot2017\cdot2018}\)
\(=\frac{1}{2018}\)
Ta có
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times....\times\left(1-\frac{1}{10}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times....\times\frac{9}{10}\)
\(=\frac{1}{10}\)
\(=\left(\frac{1}{2}\right).\left(\frac{2}{3}\right).\left(\frac{3}{4}\right)....\left(\frac{2017}{2018}\right)\)
\(=\frac{1.2.3....2017}{2.3.4...2018}\)
\(=\frac{1}{2018}\)
\(=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot...\cdot\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{2017}{2018}\)
\(=\frac{1}{2018}\)
c=(1/2+1)x(1/3+1)x(1/4+1)x...x(1/99+1)
c=(1-1/2)x(1-1/3)x(1-1/4)x...x(1-1/99)
c1/2x2/3x3/4x...x89/99
c=1/99