Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=2/3.5/6.9/10...209/210
C=4/6.10/12.18/20...418/420 là do nhân với 2
C=1.4/2.3.2.5/3.4.3.6/4.5...19.22/20.21
C=1.2.3....19/2.3.4...20.4.5.6...22/3.4.5...21
C=1/20.22/3
C=11/30
Dễ ấy mà hiểu chưa
\(B=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{780}\right)\)
\(\Rightarrow B=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{779}{780}\)
\(\Rightarrow B=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{1558}{1560}\)
\(\Rightarrow B=\frac{1.4}{2.3}.\frac{2.5}{3.4}\frac{3.6}{4.5}...\frac{38.41}{39.40}\)
\(\Rightarrow B=\frac{\left(1.2.3...38\right)\left(4.5.6...41\right)}{\left(2.3.4...39\right)\left(3.4.5...40\right)}\)
\(\Rightarrow B=\frac{1.41}{39.3}=\frac{41}{117}\)
Vậy B=\(\frac{41}{117}\)
Ai thấy đúng thì k nha
\(\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{6}\right)\cdot\cdot\cdot\left(1-\frac{1}{780}\right)\)
\(=\frac{2}{3}\cdot\frac{5}{6}\cdot\cdot\cdot\frac{779}{780}\)
\(=\frac{4}{6}\cdot\frac{10}{12}\cdot\cdot\cdot\frac{1578}{1560}\)
\(=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot\cdot\cdot\frac{38\cdot41}{39\cdot40}\)
\(=\frac{\left(1\cdot4\right)\cdot\left(2\cdot5\right)\cdot\cdot\cdot\left(38\cdot41\right)}{\left(2\cdot3\right)\cdot\left(3\cdot4\right)\cdot\cdot\cdot\left(39\cdot40\right)}\)
\(=\frac{\left(1\cdot2\cdot\cdot\cdot38\right)\cdot\left(4\cdot5\cdot\cdot\cdot41\right)}{\left(2\cdot3\cdot\cdot\cdot39\right)\cdot\left(3\cdot4\cdot\cdot\cdot40\right)}\)
\(=\frac{1\cdot41}{39\cdot3}\)
\(=\frac{41}{117}\)
a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{18}\)
⇒ x + 1 = 18
⇒ x = 17
Vậy x = 17
b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
⇒ \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)
⇒ \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(1-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=1-\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=\frac{1}{148}\)
⇒ x + 3 = 148
⇒ x = 145
Vậy x = 145
\(C=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{210}\right)\)
\(C=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{209}{210}\)
\(C=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{418}{420}\)
\(C=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}...\frac{19.22}{20.21}\)
\(C=\frac{1.4.2.5.3.6.4.7...19.22}{2.3.3.4.4.5.5.6...20.21}\)
\(C=\frac{\left(1.2.3.4...19\right).\left(4.5.6.7...22\right)}{\left(2.3.4.5...20\right).\left(3.4.5.6...21\right)}\)
\(C=\frac{1.22}{20.3}=\frac{1.11}{10.3}=\frac{11}{30}\)