K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chương I: Nhân chia đa thức

Bài 1: Thực hiện phép tính:

          a) 2x.(3x2 – 5x + 3)                                 b) (-2x-1).( x2 + 5x – 3 ) – (x-1)3

c) (2x – y).(4x2 + 2xy + y2)            d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2     

e) (x3 – 3x2 + x – 3) : (x – 3)

Bài 2: Tìm x, biết:

a) 5x(x – 1) = 10 (x – 1);                    b) 2(x + 5) – x2 – 5x = 0;        

c) x3 - x = 0;                                               d) (2x – 1)2 – (4x – 3)2 = 0               

e) (5x + 3)(x – 4) – (x – 5)x = (2x – 5)(5+2x )

Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.

a) x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).

b) 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.

Bài 4: Phân tích đa thức thành nhân tử.

          a) 10x(x – y) – 8(y – x)                      b) (3x + 1)2 – (2x + 1)2  

c) - 5x2 + 10xy – 5y2 + 20z2                   d) 4x2 – 4x +4 – y2                               

e) 2x2 - 9xy – 5y2                                             f) x3 – 4x2 + 4 x – xy2

Bài 5: Tìm giá trị nhỏ nhất của biểu thức

a) A = 9x2 – 6x + 11          b) B = 4x2 – 20x + 101 

Bài 6: Tìm giá trị lớn nhất của biểu thức   

                   a) A = x – x2                  b) B = – x2 + 6x – 11

 

3
14 tháng 12 2021

Answer:

Số lượng bài khá nhiều trong một câu hỏi nên mình sẽ gửi từng bài nhé!

Bài 5:

\(A=9x^2-6x+11\)

\(=9x^2-6x+1+10\)

\(=\left(3x-1\right)^2+10\)

\(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-1\right)^2+10\ge0\forall x\)

Dấu "=" xảy ra khi: \(3x-1=0\Rightarrow x=\frac{1}{3}\)

Vậy giá trị nhỏ nhất của \(A=10\) khi \(x=\frac{1}{3}\)

\(B=4x^2-20x+101\)

\(=4x^2-20x+25+76\)

\(=\left(2x-5\right)^2+76\)

\(\left(2x-5\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-5\right)^2+76\ge76\forall x\)

Dấu "=" xảy ra khi: \(2x-5=0\Rightarrow x=\frac{5}{2}\)

Vậy giá trị nhỏ nhất của \(B=76\) khi \(x=\frac{5}{2}\)

Bài 6:

\(A=x-x^2\)

\(=-\left(x^2-x\right)\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

\(\Rightarrow A\le\frac{1}{4}\)

Dấu "=" xảy ra khi: \(x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

Vậy giá trị lớn nhất của \(A=\frac{1}{4}\) khi \(x=\frac{1}{2}\)

\(B=-x^2+6x-11\)

\(=-\left(x^2-6x\right)-11\)

\(\Rightarrow-\left(x-3\right)^2-2\)

\(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2-2\le-2\)

\(\Rightarrow B\le-2\)

Dấu "=" xảy ra khi: \(x-3=0\Rightarrow x=3\)

Vậy giá trị lớn nhất của \(B=-2\) khi \(x=3\)

14 tháng 12 2021

Answer:

Bài 1:

\(2x\left(3x^2-5x+3\right)\)

\(=2x.3x^2-2x.5x+2x.3\)

\(=6x^3-10x^2+6x\)

\(\left(-2x-1\right)\left(x^2+5x-3\right)-\left(x-1\right)^3\)

\(=\left(-2x^3-10x^2+6x-x^2-5x+3\right)-x^3+3x^2-3x+1\)

\(=-2x^3-11x^2+x+3-x^3+3x^2-3x+1\)

\(=-\left(2x^3+x^3\right)-\left(11x^2-3x^2\right)-\left(3x-x\right)+\left(3+1\right)\)

\(=-3x^3-8x^2-2x+4\)

\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=\left(2x-y\right)[\left(2x\right)^2+2xy+y^2]\)

\(=8x^3-y^3\)

\(\left(6x^5y^2-9x^4y^3+15x^3y^4\right):3x^3y^2\)

\(=(6x^5y^2:3x^3y^2)-(9x^4y^3:3x^3y^2)+(15x^3y^4:3x^3y^2)\)

\(=2x^2-3xy+5y^2\)

\(\left(x^3-3x^2+x-3\right):\left(x-3\right)\)

\(=[\left(x^3-3x^2\right)+\left(x-3\right)]:\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+1\right):\left(x-3\right)\)

\(=x^2+1\)

Bài 2:

\(5x\left(x-1\right)=10\left(x-1\right)\)

\(\Rightarrow5x\left(x-1\right)-10\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(5x-10\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\5x-10=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

\(2\left(x+5\right)-x^2-5x=0\)

\(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)

\(x^3-x=0\)

\(\Rightarrow x\left(x^2-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

\(\left(2x-1\right)^2-\left(4x-3\right)^2=0\)

\(\Rightarrow[\left(2x-1\right)-\left(4x-3\right)][\left(2x-1\right)+\left(4x-3\right)]=0\)

\(\Rightarrow\left(-2x+2\right)\left(6x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}-2x+2=0\\6x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}-2x=-2\\6x=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{2}{3}\end{cases}}\)

\(\left(5x+3\right)\left(x-4\right)-\left(x-5\right)x=\left(2x-5\right)\left(5+2x\right)\)

\(\Rightarrow\left(5x^2-20x+3x-12\right)-x^2+5x=\left(2x-5\right)\left(2x+5\right)\)

\(\Rightarrow\left(5x^2-17x-12\right)-x^2+5x=\left(2x\right)^2-5^2\)

\(\Rightarrow\left(5x^2-x^2\right)-\left(17x-5x\right)-12-\left(4x^2-25\right)=0\)

\(\Rightarrow\left(4x^2-4x^2\right)-12x+\left(25-12\right)=0\)

\(\Rightarrow12x=-13\)

\(\Rightarrow x=\frac{-13}{12}\)

Bài 3:

\(x\left(3x+12\right)-\left(7x-20\right)+x^2\left(2x-3\right)-x\left(2x^2+5\right)\)

\(=3x^2+12x-7x+20+2x^3-3x^2-2x^3-5x\)

\(=20\)

Vậy giá trị của biểu thức không phụ thuộc vào biến 

\(3\left(2x-1\right)-5\left(x-3\right)+6\left(3x-4\right)-19x\)

\(=6x-3-5x+15+18x-24-19x\)

\(=-12\)

Vậy giá trị của biểu thức không phụ thuộc vào biến 

Bài 4:

\(10x\left(x-y\right)-8\left(y-x\right)\)

\(=10x\left(x-y\right)+8\left(x-y\right)\)

\(=\left(10x+8\right)\left(x-y\right)\)

\(=2\left(5x+4\right)\left(x-y\right)\)

\(\left(3x+1\right)^2-\left(2x+1\right)^2\)

\(=\left(3x+1-2x-1\right)\left(3x+1+2x+1\right)\)

\(=x\left(5x+2\right)\)

\(-5x^2+10xy-5y^2+20z^2\)

\(=-5\left(x^2-2xy+y^2-4z^2\right)\)

\(=-5\left(\left(x-y\right)^2-4z^2\right)\)

\(=-5\left(x-y-2z\right)\left(x-y+2z\right)\)

\(2x^2-9xy-5y^2\)

\(=2x^2-10xy+xy-5y^2\)

\(=2x\left(x-5y\right)+y\left(x-5y\right)\)

\(=\left(x-5y\right)\left(2x+y\right)\)

\(x^3-4x^2+4x-xy^2\)

\(=x[\left(x^2-4x+4\right)-y^2]\)

\(=x[\left(x-2\right)^2-y^2]\)

\(=x\left(x-y-2\right)\left(x+y-2\right)\)

Bài 1: Thực hiện phép tính:          a) 2x.(3x2 – 5x + 3)                                 b) (-2x-1).( x2 + 5x – 3 ) – (x-1)3c) (2x – y).(4x2 + 2xy + y2)            d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2     e) (x3 – 3x2 + x – 3) : (x – 3)Bài 2: Tìm x, biết:a) 5x(x – 1) = 10 (x – 1);                    b) 2(x + 5) – x2 – 5x = 0;        c) x3 - x = 0;                                               d) (2x – 1)2 – (4x – 3)2 = 0               e) (5x + 3)(x – 4) – (x – 5)x = (2x – 5)(5+2x )Bài 3:...
Đọc tiếp

Bài 1: Thực hiện phép tính:

          a) 2x.(3x2 – 5x + 3)                                 b) (-2x-1).( x2 + 5x – 3 ) – (x-1)3

c) (2x – y).(4x2 + 2xy + y2)            d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2     

e) (x3 – 3x2 + x – 3) : (x – 3)

Bài 2: Tìm x, biết:

a) 5x(x – 1) = 10 (x – 1);                    b) 2(x + 5) – x2 – 5x = 0;        

c) x3 - x = 0;                                               d) (2x – 1)2 – (4x – 3)2 = 0               

e) (5x + 3)(x – 4) – (x – 5)x = (2x – 5)(5+2x )

Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.

a) x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).

b) 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.

Bài 4: Phân tích đa thức thành nhân tử.

          a) 10x(x – y) – 8(y – x)                      b) (3x + 1)2 – (2x + 1)2  

c) - 5x2 + 10xy – 5y2 + 20z2                   d) 4x2 – 4x +4 – y2                              

e) 2x2 - 9xy – 5y2                                             f) x3 – 4x2 + 4 x – xy2

Bài 5: Tìm giá trị nhỏ nhất của biểu thức

a) A = 9x2 – 6x + 11          b) B = 4x2 – 20x + 101 

Bài 6: Tìm giá trị lớn nhất của biểu thức   

                   a) A = x – x2                  b) B = – x2 + 6x – 11

1
22 tháng 8 2022

a) 2x.(3x2 – 5x + 3)        

=2x3-10x2+6x                                                                       

b(-2x-1).( x2 + 5x – 3 ) – (x-1)3

=-2x- 10x2 + 6x - x2 - 5x + 3 - x3 + 3x2 - 3x + 1

= -3x3 - 8x2 - 2x + 4

   d) (6x5y2 – 9x4y+ 15x3y4) : 3x3y

=2x2-3xy+5y2

 

 

 

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

25 tháng 3 2020

Bài 1:

a) (3x - 2)(4x + 5) = 0

<=> 3x - 2 = 0 hoặc 4x + 5 = 0

<=> 3x = 2 hoặc 4x = -5

<=> x = 2/3 hoặc x = -5/4

b) (2,3x - 6,9)(0,1x + 2) = 0

<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

<=> 2,3x = 6,9 hoặc 0,1x = -2

<=> x = 3 hoặc x = -20

c) (4x + 2)(x^2 + 1) = 0

<=> 4x + 2 = 0 hoặc x^2 + 1 # 0

<=> 4x = -2

<=> x = -2/4 = -1/2

d) (2x + 7)(x - 5)(5x + 1) = 0

<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

<=> 2x = -7 hoặc x = 5 hoặc 5x = -1

<=> x = -7/2 hoặc x = 5 hoặc x = -1/5

13 tháng 12 2020

bài 2:

a, (3x+2)(x^2-1)=(9x^2-4)(x+1)

(3x+2)(x-1)(x+1)=(3x-2)(3x+2)(x+1)

(3x+2)(x-1)(x+1)-(3x-2)(3x+2)(x+1)=0

(3x+2)(x+1)(1-2x)=0

b, x(x+3)(x-3)-(x-2)(x^2-2x+4)=0

x(x^2-9)-(x^3+8)=0

x^3-9x-x^3-8=0

-9x-8=0

tự tìm x nha

 Bài 2 :Thực hiện phép tính          a/ (2x – 1)(x2 + 5 – 4)                          b/ -(5x – 4)(2x + 3)         c/ 7x(x – 4) – (7x + 3)(2x2 – x + 4).Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.a/ x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).b/ 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.Bài 4: Tìm x, biết.a/ 3x + 2(5 – x) = 0   b/ 5x( x – 2000) – x + 2000 = 0      c/ 2x( x + 3 ) – x – 3  = 0Bài 5: Tính giá trị các biểu...
Đọc tiếp

 

Bài 2 :Thực hiện phép tính

          a/ (2x – 1)(x2 + 5 – 4)                          b/ -(5x – 4)(2x + 3)

         c/ 7x(x – 4) – (7x + 3)(2x2 – x + 4).

Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.

a/ x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).

b/ 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.

Bài 4: Tìm x, biết.

a/ 3x + 2(5 – x) = 0   b/ 5x( x – 2000) – x + 2000 = 0      c/ 2x( x + 3 ) – x – 3  = 0

Bài 5: Tính giá trị các biểu thức sau:

a. P = 5x(x2 – 3) + x2(7 – 5x) – 7x2 với x = - 5

b. Q = x(x – y) + y(x – y) với x = 1,5, y = 10

Bài 6: Rút gọn biểu thức:

a. (6x + 1)2 + (6x – 1)2 – 2(1 + 6x)(6x – 1)

b. 3(22 + 1)(24 + 1)(28 + 1)(216 + 1)

II/ PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ   

Bài 1: Phân tích đa thức thành nhân tử.

a/ 14x2y – 21xy2 + 28x2y2                             b/    x(x + y) – 5x – 5y.       

c/ 10x(x – y) – 8(y – x).                               d/ (3x + 1)2 – (x + 1)2           

1

Bài 2: 

a: (2x-1)(x2+5x-4)

\(=2x^3+10x^2-8x-x^2-5x+4\)

\(=2x^3+9x^2-13x+4\)

b: \(=-\left(10x^2+15x-8x-12\right)\)

\(=-\left(10x^2+7x-12\right)\)

\(=-10x^2-7x+12\)

c: \(=7x^2-28x-\left(14x^3-7x^2+28x+3x^2-3x+12\right)\)

\(=7x^2-28x-14x^3+4x^2-25x-12\)

\(=-14x^3+11x^2-53x-12\)

đỡ mik vớiCâu 10: Tính (a+b+c)(a2+b2+c2-ab-bc-ca) bằng :a/a3+b3+c3 –abc    b/ a3+b3+c3 +3abc  c/ a3+b3+c3 –3abc   d/ a3+b3+c3 +abcCâu 11: Tính và thu gọn : 3x2(3x2-2y2)-(3x2-2y2)(3x2+2y2) dược kết quả là :a/ 6x2y2-4y4b/ -6x2y2+4y4c/-6x2y2-4y4d/ 18x4-4y4Câu 12: Biểu thức rút gọn và khai triển của R là :R=(2x-3).(4+6x)-(6-3x)(4x-2) là:a/ 0      b/ 40x   c/ -40x     d/ Kết quả khácCâu 13: Cho biểu thức : (3x-5)(2x+11)-(2x+3)(3x+7) kết quả...
Đọc tiếp

đỡ mik với

Câu 10: Tính (a+b+c)(a2+b2+c2-ab-bc-ca) bằng :
a/a3+b3+c3 –abc    b/ a3+b3+c3 +3abc 

 c/ a3+b3+c3 –3abc   d/ a3+b3+c3 +abc

Câu 11: Tính và thu gọn : 3x2(3x2-2y2)-(3x2-2y2)(3x2+2y2) dược kết quả là :

a/ 6x2y2-4y4
b/ -6x2y2+4y4
c/-6x2y2-4y4
d/ 18x4-4y4

Câu 12: Biểu thức rút gọn và khai triển của R là :R=(2x-3).(4+6x)-(6-3x)(4x-2) là:
a/ 0      b/ 40x   c/ -40x     d/ Kết quả khác
Câu 13: Cho biểu thức : (3x-5)(2x+11)-(2x+3)(3x+7) kết quả thực hiện phép tính là
a/ 6x2-15x -55          b/ -43x-55      c/ K phụ thuộc biến x       d/ Kết qủa khác
Câu 14: Tính (x-y)(2x-y) ta được :
a/ 2x2+3xy-y2
b/ 2x2-3xy+y2
c/ 2x2-xy+y2
d/ 2x2+xy –y

Câu 15: Tính (x2
-2xy+y2
).(x-y) bằng :

a/-x
3
-3x2y+3xy2
-y
3
b/x3
-3x2y+3xy2
-y
3
c/x3
-3x2y-3xy2
-y
3
d/-x3-3x2y+3xy2+y3

Câu 16: Biểu thức rút gọn của (2x+y)(4x2
-2xy+y2
) là :

a/ 2x3
-y
3
b/ x3
-8y3
c/ 8x3
-y
3
d/8x3+y3

Câu 17: Tính (x-2)(x-5) bằng
a/ x2+10 b/ x2+7x+10 c/ x2

-7x+10 d/ x2
-3x+10

Câu 18: Cho A=3.(2x-3)(3x+2)-2(x+4)(4x-3)+9x(4-x). Để A có giá trị bằng 0 thì x
bằng :
a/ 2 b/ 3 c/ Cả a,b đều đúng d/ Kết quả khác
Câu 19: Tìm x biết (5x-3)(7x+2)-35x(x-1)=42. x bằng
a/ -2 b/
1
2
c/ 2 d/ Kết quả khác
Câu 20: Tìm x biết (3x+5)(2x-1)+(5-6x)(x+2)=x . giá trị x bằng
a/ 5 b/ -5 c/ -3 d/ Kết quả khác
câu 21: Giá trị của biểu thức A =(2x+y)(2z+y)+(x-y)(y-z) với x=1;y=1 ;z=-1 là
a/ 3 b/ -3 c/2 d/-2
Câu 22: Giá trị của x thoả mãn (10x+9).x-(5x-1)(2x+3) =8 là
a/1,5 b/ 1,25 c/ -1,25 d/3
Câu 23: Giá trị x thoả mãn ;x(x+1)(x+6)-x3 =5x là

a/ 0 b/17− c/ 0 hoặc17d/ 0 hoặc17−

Câu 25: Giá trị nhỏ nhất của y=(x-3)2 +1 là
a/ khi x=3 b/3 khi x=1 c/ 0 khi x=3 d/ không có GTNN trên TXĐ
Câu 26: Chọn câu sai
Với mọi số tự nhiên n,giá trị của biểu thức (n+7)2-(n-5)2chia hết cho

a/ 24 b/16 c/8 d/ 6
Câu 27: Rút gọn biểu thức (x+y)2 +(x-y)2-2x2ta được kết quả là :

a/ 2y b/2y2c/-2y2d/ 4x+2y2
Câu 28: Với mọi giá trị của biến số giá trị của biểu thức 16x4-40x2y3 +25y6là 1 số
a/ dương b/Không dương c/ âm d/ không âm
Câu 29: Thực hiện phép tính :( 5x+4)2 +(1-5x)2 +2(5x+4)(1-5x) ta được
a/ (x+5)2
b/ (3+10x)2

c/ 9 d/25

Câu 30: Thực hiện phép tính (2x-3)2 +(3x+2)2 +13(1-x)(1+x) ta được kết quả là :
a/ 26x2
b/ 0 c/-26 d/26
Câu 31: Chọn kết quả đúng ; (2x+3y)(2x-3y) bằng
a/ 4x2-9y2
b/ 2x2-3y2
c/ 4x2+9y2

d/ 4x-9y

Câu 32: Tính Tính (x+1/4)^2ta được :

a/ x2-12x + 1/4

b/ x2 +12x + 18
c/ x2 +12x + 116
d/ x2-12x -1/4

Câu 33: Với mọi x thuộc R phát biểu nào sau đây là sai
a/ x2-2x+3>0 b/ 6x-x2-10<0 c/ x2 –x-100<0 d/ x2 –x+1>0

9
4 tháng 12 2021
1÷+×/=÷#$%!=
4 tháng 12 2021

chúc mng lm bài được

Bài 1: 

a: \(=6x^3-10x^2+6x\)

b: \(=-2x^3-10x^2-6x\)

Bài 4: 

a: =>3x+10-2x=0

=>x=-10

c: =>3x2-3x2+6x=36

=>6x=36

hay x=6

4 tháng 1 2022

Bài 1:

\(a,=6x^3-10x^2+6x\\ b,=-2x^3-10x^2-6x\)

Bài 4:

\(a,\Leftrightarrow3x+10-2x=0\Leftrightarrow x=-10\\ b,\Leftrightarrow x\left(2x^2+9x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\\ \Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\\ \Leftrightarrow-6x=8\Leftrightarrow x=-\dfrac{4}{3}\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\)

Bài 1:

\(a,=7xy\left(2x-3y+4xy\right)\\ b,=x\left(x+y\right)-5\left(x+y\right)=\left(x-5\right)\left(x+y\right)\\ c,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ d,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\\ =2x\left(4x+2\right)=4x\left(2x+1\right)\\ e,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x^2+8x-x-8=\left(x+8\right)\left(x-1\right)\\ g,\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\\ h,=x^2+3x+x+3=\left(x+3\right)\left(x+1\right)\)

23 tháng 11 2016

dài thế ai trả lời đc hả ?

23 tháng 11 2016

tu lam di luoi vua thoi

23 tháng 10 2016

bn ko bik lm hay sao, hay là bn chỉ đăng đề lên thôi

2 tháng 11 2016

sao nhìu... z p , đăq từq câu 1 thôy nha p

20 tháng 10 2016

Ôi trời sao lắm thế ít thôi bạn nên tách ra mà bạn cần gấp lắm à

20 tháng 10 2016

đúng rồi pn. giúp mik đc bài nào cũng đc