Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề vì Chuối + táo = dừa
=> dừa lớn nhất
tại sao lại táo + dừa = chuối
Vì chuối +táo =dừa mà táo +dừa =chuối
nên chuối +dừa +2 táo =chuối +dừa
=>táo =0
mà chuối -12= táo
=>chuối =12
mà táo +chuối =dừa
nên 12= dừa
Vậy chuối +táo + dừa =12+0+12=24
Lời giải:
Diện tích xung quanh hình nón:
$\pi (r+R).l=\pi (6+3).4=36\pi$ (cm vuông)
Diện tích toàn phần:
$36\pi+\pi r^2+\pi R^2=36\pi +\pi.3^2+\pi. 6^2=81\pi$ (cm vuông)
Thể tích:
Chiều cao hình nón: $\sqrt{4^2-(6-3)^2}=\sqrt{7}$ (cm)
$\frac{1}{3}\pi (r^2+R^2+r.R)h=\frac{1}{3}\pi (3^2+6^2+3.6).\sqrt{7}=21\sqrt{7}\pi$ (cm khối)
Hình vẽ đâu bn.(không có hình thì mik ko bt AB là đường sinh hay chiều cao nhé. Nhưng thường thì AB là đường sinh)
(nếu đề bài AB là đường cao thì bn đăng lại nhé)
\(Sxq=\pi\left(r+R\right)l=\pi\left(3+6\right)4=36\pi\left(cm^2\right)\)
\(Stp=\pi\left(r+R\right)l+\pi\left(r^2+R^2\right)=36\pi+\pi\left(3^2+6^2\right)=36\pi+45\pi\)
\(=81\pi\left(cm^2\right)\)
có: \(h=\sqrt{l^2-\left(R-r\right)^2}=\sqrt{4^2-\left(6-3\right)^2}=\sqrt{7}cm\)
\(V=\dfrac{1}{3}\pi\left(r^2+R^2+rR\right).h\)\(=\dfrac{1}{3}\pi.\left(3^2+6^2+3.6\right).\sqrt{7}=21\sqrt{7}.\pi\left(cm^3\right)\)
Cách 1: Áp dụng công thức
- Với hình nón cụt có các bán kính các đáy là r1, r2, đường sinh l và chiều cao h thì :
Sxq= π(r1+ r2).l
V = 1/3πh(r12+ r22+ r1 r2)
Như vậy :
Diện tích xung quanh hình nón cụt thì bằng tích của số π với tổng hai bán kính và với đường sinh.
Thể tích của hình nón cụt thì bằng 1/3 tích của số π với đường cao h và tổng bình phương các bán kính cộng thêm tích của hai bán kính .
Cách 2: Vì hình nón cụt được cắt ra từ hình nón nên ta có thể tính
V(nón cụt )=V(nón lớn )-V(nón nhỏ )
S(xq nón cụt )=S(xq nón lớn )-S(xq nón nhỏ )