Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) `P=x^2-4x+5`
`=(x^2-4x+4)+1`
`=(x^2-2.x.2+2^2)+1`
`=(x-2)^2+1`
Vì `(x-2)^2 >=0 ` nên `(x-2)^2+1 >=1 >0` với mọi `x`
`<=> (x-2)^2+1 >0` với mọi `x`
Vậy ta có điều phải chứng minh.
``
b) `P=x^2-2x+2`
`=(x^2-2x+1)+1`
`=(x^2-2.x.1+1^2)+1`
`=(x-1)^2+1`
Vì `(x-1)^2 >=0` với mọi `x`
`=>(x-1)^2+1 >=1 >0` với mọi `x`
`<=> (x-1)^2+1 >0` với mọi `x`
Vậy ta có điều phải chứng minh.
\(a,P=x^2-4x+5\)
\(=x^2-2.x.2+4+1\)
\(=\left(x-2\right)^2+1\)
Vì \(\left(x-2\right)^2\ge0\forall x\) mà \(1>0\)
\(\Rightarrow\left(x-2\right)^2+1>0\forall x\)
Vậy đa thức \(P\) luôn luôn lớn hơn 0 \(\forall x\)
_____________________________________
\(b,P=x^2-2x+2\)
\(=x^2-2.x.1+1+1\)
\(=\left(x-1\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0\forall x\) mà \(1>0\)
\(\Rightarrow\left(x-1\right)^2+1>0\forall x\)
Vậy đa thức \(P\) luôn luôn lớn hơn 0 \(\forall x\)
a)x2-6x+10
Ta có:x2-6x+10=x2-2.3x+9+1
=(x-3)2+1
Vì (x-3)2\(\ge\)0
Suy ra:(x-3)2+1\(\ge\)1(đpcm)
b)4x-x2-5
Ta có:4x-x2-5=-(x2-4x+5)
=-(x2-2.2x+4)-1
=-1-(x-2)2
Vì -(x-2)2\(\le\)0
Suy ra:-1-(x-2)2\(\le\)-1(đpcm)
a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\) với mọi x
b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\) với mọi x
a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\)
hay \(x^2-6x+10>0\left(đpcm\right)\)
b) \(4x-x^2-5=-\left(x^2-4x\right)-5=-\left(x^2-4x+4\right)+4-5\)
\(=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\)nên \(-\left(x-2\right)^2-1< 0\)
hay \(4x-x^2-5< 0\left(đpcm\right)\)
a) Ta có:
\(x^2-6x+10=x^2-6x+9+1\) 1
\(=\left(x-3\right)^2+1\)
vì \(\left(x-3\right)^2\ge0\forall x\in R\) ;1>0
\(\Rightarrow\left(x-3\right)^2+1\ge1\forall x\in R\)
=>đpcm
b)
\(4x-x^2-5=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1\)
vì:\(-\left(x-2\right)^2\le0\forall x\in R\) ;-1<0
=>..........
vậy...
hc tốt
\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)
Giải:
a) \(x^2-6x+10\)
\(=x^2+6x+9+1\)
\(=\left(x+3\right)^2+1\)
Vì \(\left(x+3\right)^2\ge0\forall x\)
Nên \(\left(x+3\right)^2+1\ge1\forall x\)
Vậy \(\left(x+3\right)^2+1>0\forall x\).
b) \(4x-x^2-5\)
\(=-x^2+4x-4-1\)
\(=-\left(x^2-4x+4\right)-1\)
\(=-\left(x+2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\)
Nên \(-\left(x+2\right)^2-1\le-1\forall x\)
Vậy \(-\left(x+2\right)^2-1< 0\forall x\).
Chúc bạn học tốt!
\(\text{a) }x^2-6x+10\\ =x^2-6x+9+1\\ =\left(x^2-6x+9\right)+1\\ =\left(x^2-2\cdot x\cdot3+3^2\right)+1\\ =\left(x-3\right)^2+1\\ \text{Ta có : }\left(x-3\right)^2\ge0\forall x\\ \Rightarrow\left(x-3\right)^2+1\ge1\forall x\\ \Rightarrow\left(x-3\right)^2+1>0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị dương }\forall x\)
\(\text{b) }4x-x^2-5\\ =-x^2+4x-4-1\\ =-\left(x^2-4x+4\right)-1\\ =-\left(x^2-2\cdot x\cdot2+2^2\right)-1\\ =-\left(x-2\right)^2-1\\ \text{Ta có : }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow-\left(x-2\right)^2-1\le-1\forall x\\ \Rightarrow-\left(x-2\right)^2-1< 0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị âm }\forall x\)
a) Đặt \(A=4x-x^2-5\)
\(-A=x^2-4x+5\)
\(-A=\left(x^2-4x+4\right)+1\)
\(-A=\left(x-2\right)^2+1\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge1\)
\(\Leftrightarrow A\le-1< 0\left(đpcm\right)\)
b) Đặt \(B=x^2-2x+5\)
\(B=\left(x^2-2x+1\right)+4\)
\(B=\left(x-1\right)^2+4\)
Mà \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow B\ge4>0\left(đpcm\right)\)
a)4x-x2-5 = -(x2-4x+4)-1= -(x-2)^2 -1 < 0 với mọi x (đpcm)
b) x2 -2x+5= (x2-2x+1)+4=(x-1)^2 +4 >0 với mọi x (đpcm)
a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\) với mọi x
b) \(4x-x^2-5=-x^2+4x-2^2-1=-\left(x^2-2.2x+2^2\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\) nên \(-\left(x-2\right)^2-1< 0\) với mọi x
Đặt \(t=x-1\)
Thế vào:\(t\left(t-1\right)+5=t^2-t+5\)
\(=t^2-2.\frac{1}{2}.t+\left(\frac{1}{2}\right)^2+5-\frac{1}{4}\)
\(=\left(t-\frac{1}{2}\right)^2+\frac{19}{4}>0\)
Ta có :
\(VT=\left(x-1\right)\left(x-2\right)+5=x^2-x-2x+2+5=x^2-3x+7\)
\(VT=\left(x^2-3x+\frac{9}{4}\right)+\frac{19}{4}=\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2\right]+\frac{19}{4}=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}>0\)
Vậy \(\left(x-1\right)\left(x-2\right)+5>0\) với mọi x
Chúc bạn học tốt ~