Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2008 đồng dư với 1(mod 3)
\(\Rightarrow\)2008b2 đồng dư với 1(mod 3)
mà 2007b2 chia hết cho 3
\(\Rightarrow\)a+(2007b2+1)=a+2008b2
\(\Rightarrow\)a+1+2007b2 chia hết cho 3
vì a+1 chia hết cho 3(gt)
2007b2 chia hết cho 3 (2007 chia hết cho 3)
\(\Rightarrow\)a+2008b2 chia hết cho 3
Ta có : \(2008a^2+a=2009b^2+b\)
\(\Leftrightarrow2008\left(a^2-b^2\right)+\left(a-b\right)=b^2\)
\(\Leftrightarrow\left(a-b\right)\left(2008b+2008b+1\right)=b^2\) (1)
Mặt khác : \(2008a^2+a=2009b^2+b\)
\(\Leftrightarrow2009a^2-2009b^2+\left(a-b\right)=a^2\)
\(\Leftrightarrow2009\left(a-b\right)\left(a+b\right)+\left(a-b\right)=a^2\)
\(\Leftrightarrow\left(a-b\right)\left(2009a+2009b+1\right)=a^2\) (2)
Từ (1) và (2)
\(\Rightarrow\left(a-b\right)^2\left(2008a+2008b+1\right)\left(2009a+2009b+1\right)=\left(ab\right)^2\) (*)
Nếu : \(a=b\) thì từ (*)
\(\Rightarrow\hept{\begin{cases}a-b=0\\2008+2008b+1=1\end{cases}}\) đều là số chính phương
Nếu \(a\ne b\) thì từ (*) \(\Rightarrow2008a+2008b+1,2009a+2009b+1\) là số chính phương
Gọi \(\left(2008a+2008b+1,2009a+2009b+1\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2008a+2008b+1⋮d\\2009a+2009b+1⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}a+b⋮d\\2009\left(a+b\right)+1⋮d\end{cases}}\)
\(\Rightarrow1⋮d\Rightarrow d=1\left(d\inℕ^∗\right)\)
\(\Rightarrow\left(2008a+2008b+1,2009a+2009b+1\right)=1\)
mà : \(2008a+2008b+1,2009a+2009b+1\) là số chính phương
\(\Rightarrow2008a+2008b+1,2009a+2009b+1\) đồng thời là số chính phương
Nên từ (1) \(\Rightarrow a-b\) là số chính phương.
Vậy : bài toán được chứng minh .
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
a) Gọi ƯCLN(a ; b) = d
=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)
mà theo đề ra \(a^2+b^2⋮3\)
=> \(d⋮3\)
Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\)
b) Gọi ƯCLN(a ; b) = d
=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)
mà theo đề ra \(a^2+b^2⋮7\)
=> \(d⋮7\)
Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮7\\b⋮7\end{cases}}\)
f(x) chia hết cho 3 với mọi x
=> f(0) chia hết cho 3 => C chia hết cho 3
f(1) ; f(-1) chia hết cho 3
=> f(1) = A+B +C chia hết cho 3 và f(-1) = A - B + C chia hết cho 3
=> f(1) + f(-1) chia hết cho 3 và f(1) - f(-1) chia hết cho 3
f(1) + f(-1) chia hết cho 3 => 2A + 2C chia hết cho 3 => A + C chia hết cho 3 mà C chia hết cho 3 => A chia hết cho 3
f(1) - f(-1) chia hết cho 3 => 2B chia hết cho 3 => B chia hết cho 3
Vậy.......................
B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3
b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)
Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6
+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7
Vậy a^7-a chia hết cho 7
b, a^7-a=a(a^6-1)
=a(a^3+1)(a^3-1)
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1)
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1)
+7a (a-1) (a+1) (a^2+a-1)
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
+7a (a-1) (a+1) (a^2+a-1)
+7a (a-1) (a+1) (a^2-a-6)
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7)
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)]
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7.
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7
Vô lý làm gì có chuyện đó nà chứng minh
mk ko biết nếu biết mk đã giúp bn từ lâu rùi .Sory nha!