K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Đặt: \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2019}{3^{2019}}\)

\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2019}{3^{2018}}\)

\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}-\frac{2019}{3^{2019}}\)

Đặt: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\)

\(\Rightarrow2B=1-\frac{1}{3^{2018}}\)

\(\Rightarrow B=\frac{1-\frac{1}{3^{2018}}}{2}\)

Thay vào \(2A\Rightarrow2A=1+\frac{\left(1-\frac{1}{3^{2018}}\right)}{2}-\frac{2019}{3^{2019}}\)

\(=1+\frac{1}{2}-\frac{1}{2.3^{2018}}-\frac{2019}{3^{2019}}< 1+\frac{1}{2}=\frac{3}{2}\)

\(\Rightarrow A< 0,75\left(đpcm\right)\)

15 tháng 2 2020

Đặt  A=\(\frac{1}{3}+\frac{2}{3^2}+.....+\frac{2019}{3^{2019}}\)

3A=\(1+\frac{2}{3}+.....+\frac{2019}{3^{2018}}\)

3A - A = \(\left(1+\frac{2}{3}+...+\frac{2018}{3^{2017}}+\frac{2019}{3^{2018}}\right)\) -\(\left(\frac{1}{3}+....+\frac{2017}{3^{2017}}+\frac{2018}{3^{2018}}+\frac{2019}{3^{2019}}\right)\)

2A = \(1+\frac{1}{3}+...+\frac{1}{3^{2018}}-\frac{2019}{3^{2019}}\)

Đặt B=\(1+\frac{1}{3}+....+\frac{1}{3^{2018}}\)

3B =\(3+1+....+\frac{1}{3^{2017}}\)

3B - B=\(\left(3+1+....+\frac{1}{3^{2017}}\right)\)-\(\left(1+\frac{1}{3}+...+\frac{1}{3^{2018}}\right)\)

2B =\(3-\frac{1}{3^{2018}}\)

Ta có:2A= B - \(\frac{2019}{3^{2019}}\)

4A = 2B -\(\frac{2.2019}{3^{2019}}\)

4A=\(\left(3-\frac{1}{3^{2018}}\right)\)-\(\frac{2.2019}{3^{2019}}\)

A=\(\frac{3}{4}-\frac{1}{3^{2018}.4}-\frac{2019}{3^{2019}.2}\)<\(\frac{3}{4}\)=0,75  

Suy ra :\(\frac{1}{3}+\frac{2}{3^2}+...+\frac{2019}{3^{2019}}\)< 0,75 (đpcm)

25 tháng 9 2020

a/

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(A=2A-A=1-\frac{1}{2^{100}}< 1\)

b/

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)

\(2B=3B-B=1-\frac{1}{3^{2019}}\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2019}}< \frac{1}{2}\)

8 tháng 2 2020

Tham khảo

https://hoc24.vn/hoi-dap/question/814814.html

8 tháng 2 2020

B=11.2+13.4+15.6+....+12019.2020

⇒2B=21.2+23.4+25.6+....+22019.2020

<1+12.3+13.4+14.5+15.6+....+12018.2019+12019.2020

2B<1+3−22.3+4−33.4+5−44.5+....+2019−20182018.2019+2020−20192019.2020

2B<1+12−13+13−14+...+12019−12020

2B<1+12−12020<1+12

B<34

---------------------

Đặt 22018=a;32019=b;52020=c(a,b,c>0)

A=aa+b+bb+c+cc+a>aa+b+c+ba+b+c+ca+b+c=1

⇒A>1>34>B

28 tháng 3 2020

\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)

=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)

\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)

=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)

=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)

=>\(A>B\)

cách này mình tự nghĩ 

28 tháng 3 2020

thank you \(v\text{er}y^{1000000000000}\)much

10 tháng 2 2020

sao ko có ai giúp mk vậy

10 tháng 2 2020

Thật ra tui cũng không rõ lắm đâu. Cậu thử nhân A với \(\dfrac{2019}{2020}\)rồi lại cộng lại với A thử coi nào <Chú Ý : chưa chắc đã đúng >

Y
18 tháng 4 2019

+ \(n^3=n\cdot n^2>n\left(n^2-1\right)\)

\(\Rightarrow n^3>n\left(n^2+n-n-1\right)\)

\(\Rightarrow n^3>n\left[n\left(n+1\right)-\left(n-1\right)\right]\)

\(\Rightarrow n^3>n\left(n-1\right)\left(n+1\right)\)\(\Rightarrow\frac{1}{n^3}< \frac{1}{\left(n-1\right)n\left(n+1\right)}\)

\(\Rightarrow\frac{1}{n^3}< \frac{1}{2}\left[\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\right]=\frac{1}{2}\left(\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

Do đó : \(B< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{2018\cdot2019\cdot2020}\)

\(\Rightarrow B< \frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\right)\)

\(\Rightarrow B< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{2019\cdot2020}\right)< \frac{1}{4}\)

14 tháng 8 2019

\(D=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2018}{4^{2018}}+\frac{2019}{4^{2019}}\)

\(\Rightarrow4D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)

\(\Rightarrow4D-D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)

\(-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-\frac{4}{4^4}-...-\frac{2018}{4^{2018}}-\frac{2019}{4^{2019}}\)

\(\Rightarrow3D=1+\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2018}}\right)-\frac{2019}{4^{2019}}\)

Đặt \(M=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+\frac{1}{4^4}+...+\frac{1}{4^{2018}}\)

\(\Rightarrow4M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)

\(\Rightarrow4M-M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)

\(-\frac{1}{4}-\frac{1}{4^2}-\frac{1}{4^3}-\frac{1}{4^4}-...-\frac{1}{4^{2018}}\)

\(\Rightarrow3M=1-\frac{1}{4^{2018}}\)

\(\Rightarrow M=\frac{1}{3}-\frac{1}{3.4^{2018}}\)

\(\Rightarrow3D=1+\frac{1}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}\)

\(\Rightarrow3D=\frac{4}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}< \frac{4}{3}\)

\(\Rightarrow D< \frac{4}{9}=\frac{40}{90}< \frac{45}{90}=\frac{1}{2}\left(đpcm\right)\)

9 tháng 10 2019

Sửa đề \(\frac{2019}{1}+\frac{2018}{2}+...+\frac{1}{2019}\)

Ta có: \(\frac{2019}{1}+\frac{2018}{2}+...+\frac{1}{2019}\)

\(=\left(2019+1\right)+\left(\frac{2018}{2}+1\right)+...+\left(\frac{1}{2019}+1\right)-2019\)

\(=2020+\frac{2020}{2}+...+\frac{2020}{2019}+\frac{2020}{2020}-2020\)

\(=\frac{2020}{2}+...+\frac{2020}{2019}+\frac{2020}{2020}\)

\(=2020.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)\)Thay vào biểu thức A ta được:

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}}{2020.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)}=\frac{1}{2020}\)

18 tháng 1 2019

\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)

\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)

\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất

Mà \(\left|2018x-2019\right|\ge0\)

\(\Rightarrow\left|2018x-2019\right|+1\ge1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left|2018x-2019\right|=0\)

\(\Leftrightarrow x=\frac{2019}{2018}\)

Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)

18 tháng 1 2019

\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)

\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)

\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)

\(\Rightarrow5^x=3^{2x}\)

Mà \(\left(5;3\right)=1\)

\(\Rightarrow x=2x=0\)