Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi 4 số tự nhiên chẳn liên tiếp là a ; a+2 ; a+4 ; a+6
Theo đề bài ta có:
\(a+\left(a+2\right)+\left(a+4\right)+\left(a+6\right)\)
\(=a+a+2+a+4+a+6=4a+12\)
Vì 4a chia hết cho 4 và 12 chia hết 4.
\(\Rightarrow4a+12\)chia hết cho 4.
Vậy tổng của 4 số tự nhiên chẵn liên tiếp là một số chia hết cho 4.
b) Gọi 5 số tự nhiên chẵn liên tiếp là: a ; a+2 ; a+4 ; a+6 ; a+8
Theo đề bài ta có:
\(a+\left(a+2\right)+\left(a+4\right)+\left(a+6\right)+\left(a+8\right)\)
\(=a+a+2+a+4+a+6+a+8=5a+20\)
Vì 5a chia hết chia 5 và 20 cũng chia hết cho 5.
\(\Rightarrow5a+20\)chia hết cho 5.
Vậy tổng của 5 số tự nhiên chẵn liên tiếp là một số chia hết cho 5.
a) Gọi 4 số liên tiếp là a , (a+1), (a+2) , (a+3)
suy ra tổng của 4 sồ liên tiếp là :
a+a+1+a+2+a+3 = 4a+ 4 + 1
a) Giả sử 3 số đó là a,a+1,a+2
Tổng của chúng : a + a + 1 + a + 2 = 3a + 3 chia hết cho 3 (đpcm)
C2: Nếu a chia hết cho 3 thì a có dạng 3k và a +1 = 3k + 1
a + 2 =3k+2
a + a + 1 + a + 2 = 3k + 3k+ 1 +3k+2 cũng tương tự với trường hợp a : 3 dư 1 và dư 2
b) Gọi 4 số đó là a,a+1,a+2,a+3
a + a + 1 + a + 2 + a + 3 = 4a + 6 không chia hết cho 4
a,
Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)
Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2
Ta có: 2k ⋮ 2; 2 ⋮ 2
Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2
Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^
a) hai số liên tiếp thì sẽ có 1 số chẵn và 1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3
c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2
d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3
CHòi oi bố đăng nhiều thế con die
a, có
b, ko
c, XÉT 3stn liên tiếp: a,a+1,a+2 (a E N) a có dạng: 3k;3k+1;3k+2 (k E N)
d, tương tự c
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
a) Gọi ba số tự nhiên đó là : a ; a + 1 và a + 2
Tổng là : a + a +1 + a + 2 = 3a + 3 chia hết cho 3
b) gọi 4 stn là a ; a + 1 ; a + 2 và a + 3
ta có tổng là a + a + 1 + a + 2 + a + 3 = 4a + 6
4a chia hết cho 4
6 không chia hết cho 4
=> 4a + 6 k chia hết cho 4