chứng tỏ:

a) M=3+3^2+3^3+...+3^90chia hết cho 4;12;13...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

các bạn giúp mình với

27 tháng 9 2021

Viết rõ đầu bài ra đi em . chứ nhìn ko hiểu j cả

DD
28 tháng 9 2021

\(B=3^2+3^3+...+3^{99}\)

\(3B=3^3+3^4+...+3^{100}\)

\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)

\(2B=3^{100}-3^2\)

\(B=\frac{3^{100}-9}{2}\)

\(2B+9=3^{2n+4}\)

\(\Leftrightarrow3^{2n+4}=3^{100}\)

\(\Leftrightarrow2n+4=100\)

\(\Leftrightarrow n=48\).

2 tháng 6 2015

Số tự nhiên nhỏ nhất có đúng 12 ước số là ?

 

4 tháng 8 2017

Ai trả lời đầu tiên mik k cho.

6 tháng 8 2017

A:7 (dư 5)

A:13 (dư 4)

=) A + 9 chia hết cho 7 và 13

7 và 13 đều là số nguyên tố => A + 9 chia hết cho 7 x 13 = 91

=> A chia cho 91 dư 91 - 9 = 82

Vậy số tự nhiên đó chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem số đó chia cho 91 dư 82

10 tháng 11 2021

\(A=2+2^2+2^3+2^4+.....2^{100}\)

\(=2.3+2^3.3+....2^{99}.3\)

\(=6\left(1+2^2+....2^{98}\right)⋮6\)

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

27 tháng 7 2018

\(A=\left\{150;155;160;165;...;920;925\right\}\)

- Số phần tử của A là : \(\left(925-150\right):5+1=156\)( phần tử )

=> A có 156 phần tử

Học tốt @_@

3 tháng 1 2018

Đặt A = ( 2 . 22 ) + ( 3 . 2) + ( 4 . 4) + ............ + ( n . 2

A = ( 2 . 2) + ( 3 . 2) + [ 4(22)4 ] + ........... + ( n . 2)

A = ( 2 . 2) + ( 3 . 2) + [ 4(2) ] + .............. + ( n . 2)

2A = ( 2 . 2) + ( 3 . 2) + ( 4 . 2) + ........... + ( n . 2n+1 )

Sau đó bạn làm theo đây: Câu hỏi của Thái Hoàng Thục Anh  

3 tháng 1 2018

\(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)
\(2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
\(\Rightarrow2A-A=-2.2^2-\left(2^3+2^4+2^5+...+2^n\right)+n.2^{n+1}\)
\(B=2^3+2^4+...+2^n \)
\(2B-B=2^{n+1}-2^3\)
\(\Rightarrow A=-2.2^2+2^3-2^{n+1}+n.2^{n+1}=\left(n-1\right).2^{n+1}\)
\(\Rightarrow\left(n-1\right).2^{n+1}=2^n+11\)
Do \(\left(n-1\right).2^{n+1}\) luôn là số chẵn, \(2^n+11\) luôn là số lẻ nên không có n thỏa mãn