\(\dfrac{1}{n^2}< \dfrac{1}{n-1}-\dfrac{1}{n}\) (nE
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2021

\(n^2>n^2-n=n\left(n-1\right)\Rightarrow\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}\Rightarrow\dfrac{1}{n^2}< \dfrac{1}{n-1}-\dfrac{1}{n}\)

Bài 3: 

Để A là số nguyên thì \(n-2+5⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{3;1;7;-3\right\}\)

Bài 1: a, Chứng tỏ rằng với n thuộc N, n khác 0 thì: \(\dfrac{1}{n\left(n+1\right)}\)=\(\dfrac{1}{n}\) - \(\dfrac{1}{n+1}\) b, Áp dụng kết quả ở câu a để tính nhanh: A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.....+\(\dfrac{1}{9.10}\) Bài 2: Tính nhanh: C=\(\dfrac{1}{2}\)+\(\dfrac{1}{14}\)+\(\dfrac{1}{35}\)+\(\dfrac{1}{65}\)+\(\dfrac{1}{104}\)+\(\dfrac{1}{152}\) Bài 3: a, Cho 2 phân số...
Đọc tiếp

Bài 1:

a, Chứng tỏ rằng với n thuộc N, n khác 0 thì:

\(\dfrac{1}{n\left(n+1\right)}\)=\(\dfrac{1}{n}\) - \(\dfrac{1}{n+1}\)

b, Áp dụng kết quả ở câu a để tính nhanh:

A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.....+\(\dfrac{1}{9.10}\)

Bài 2: Tính nhanh:

C=\(\dfrac{1}{2}\)+\(\dfrac{1}{14}\)+\(\dfrac{1}{35}\)+\(\dfrac{1}{65}\)+\(\dfrac{1}{104}\)+\(\dfrac{1}{152}\)

Bài 3:

a, Cho 2 phân số \(\dfrac{1}{n}\)\(\dfrac{1}{n+1}\) (n thuộc Z, n > 0). Chứng tỏ rằng tích của 2 phân số này bằng hiệu của chúng.

b, Áp dụng kết quả trên để tính giá trị các biểu thức sau:

A=\(\dfrac{1}{2}\) . \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) . \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) . \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) . \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) . \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) . \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) . \(\dfrac{1}{9}\)

B=\(\dfrac{1}{30}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{56}\)+\(\dfrac{1}{72}\)+\(\dfrac{1}{90}\)+\(\dfrac{1}{110}\)+\(\dfrac{1}{132}\)

Các bạn giúp mk với nha!vui

4
18 tháng 3 2017

Bài 1:

a) \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)

Quy đồng \(VP\) ta được:

\(VP=\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(\Rightarrow VP=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)

\(\Rightarrow VP=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)

\(\Rightarrow VP=VT\)

Vậy \(\forall n\in Z,n>0\Rightarrow\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (Đpcm)

b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{9}{10}\)

18 tháng 3 2017

Bài 3:

a) \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)

b) A=\(\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}+\dfrac{1}{5}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{8}+\dfrac{1}{8}.\dfrac{1}{9}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\)

\(=\dfrac{1}{2}-\dfrac{1}{9}\)

\(=\dfrac{7}{18}\)

B=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)

\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)

\(=\dfrac{1}{5}-\dfrac{1}{12}\)

\(=\dfrac{7}{60}\)

22 tháng 7 2018

N = \(\dfrac{1}{10^2}+\dfrac{1}{11^2}+\dfrac{1}{12^2}+...+\dfrac{1}{n^2}\)

= \(\dfrac{1}{10.10}+\dfrac{1}{11.11}+\dfrac{1}{12.12}+...+\dfrac{1}{n.n}\)

=> N < \(\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}+...+\dfrac{1}{\left(n-1\right).n}\)

=> N < \(\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(=>N< \dfrac{1}{9}-\dfrac{1}{n}\)

=> N < \(\dfrac{1}{9}\)

Vậy N < \(\dfrac{1}{9}\)

22 tháng 3 2019

???

9 tháng 5 2018

Gọi tổng trên là A

1/2.2<1/1.2

1/3.3<1/2.3

........

1/n.n<1/(n-1).n

=>A< 1/1.2+1/2.3+.....+1/(n-1).n

=> A<1-1/2+1/2-1/3+....+1/(n-1)-1/n

=> A< 1-1/n<1

=>A<1

9 tháng 5 2018

chúc bạn một kì nghỉ hè vui vẻ

28 tháng 3 2017

a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )

28 tháng 3 2017

b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)

=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)

Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1

2 tháng 5 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{n\left(n+3\right)}\)

\(\Rightarrow S=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{\left(n+3\right)-n}{n\left(n+3\right)}\)

\(\Rightarrow S=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{n+3}{n\left(n+3\right)}-\dfrac{n}{n\left(n+3\right)}\)

\(\Rightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{n}-\dfrac{1}{n+3}\)

\(\Rightarrow S=1-\dfrac{1}{n+3}< 1\Rightarrow S< 1\)

Vậy S < 1

13 tháng 3 2017

\(A=\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+...+\dfrac{1}{8}.\dfrac{1}{9}\)

\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(=\dfrac{1}{2}-\dfrac{1}{9}\)

\(=\dfrac{7}{18}\)

\(B=\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{110}\)

\(=\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{10.11}\)

\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{10}-\dfrac{1}{11}\)

\(=\dfrac{1}{4}-\dfrac{1}{11}\)

\(=\dfrac{7}{44}\)

14 tháng 3 2017

Linh tinh

19 tháng 3 2017

a,Vế trái:

\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)

\(=\dfrac{1}{1008}+\dfrac{1}{2009}+...+\dfrac{1}{2014}\)

b,chưa có câu trả lời, sorry nhaleu

19 tháng 3 2017

Thanks.

7 tháng 3 2017

Ta có: \(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+...+\dfrac{11}{5^{12}}\)

\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+...+\dfrac{11}{5^{11}}\)

\(\Rightarrow5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)

\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)

\(\Rightarrow20A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)

\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)

\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)

\(\Rightarrow A< \dfrac{1}{16}\)

22 tháng 1 2018
Ta có: A=152+253+...+11512A=152+253+...+11512

⇒5A=15+252+...+11511⇒5A=15+252+...+11511

⇒5A−A=15+152+...+1511−11512⇒5A−A=15+152+...+1511−11512

⇒4A=15+152+...+1511−11512⇒4A=15+152+...+1511−11512

⇒20A=1+15+...+1510−11511⇒20A=1+15+...+1510−11511

⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)

⇒16A=1−12511+11512<1⇒16A=1−12511+11512<1

⇒A<116⇒A<116

leuleu