\(\frac{1}{3}\)+ \(\frac{2}{3^2}\)+ <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

hơi khó mình chuyên văn thui hì

20 tháng 6 2017

a, \(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(2C=1-\frac{1}{3^{99}}\)

\(C=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}\)(đpcm)

b, Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{397}{3^{100}}\)

\(A=\frac{3}{4}-\frac{397}{4.3^{100}}< \frac{3}{4}\)(đpcm)

25 tháng 6 2017

Ta có: \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{100}{3^{101}}\)

\(\frac{2}{3}A=\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)-\left(\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{100}{3^{101}}\right)\)

\(\frac{2}{3}A=\frac{1}{3}+\left(\frac{2}{3^2}-\frac{1}{3^2}\right)+\left(\frac{3}{3^3}-\frac{2}{3^3}\right)+...+\left(\frac{100}{3^{100}}-\frac{99}{3^{100}}\right)-\frac{100}{3^{101}}\)

\(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{100}{3^{101}}\)

Đặt: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow\frac{1}{3}B=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{101}}\)

\(\Rightarrow\frac{2}{3}B=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)-\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{101}}\right)\)

\(=\frac{1}{3}-\frac{1}{3^{101}}\)\(\Leftrightarrow B=\left(\frac{1}{3}-\frac{1}{3^{101}}\right):\frac{2}{3}=\left(\frac{1}{3}-\frac{1}{3^{101}}\right).\frac{3}{2}\)

Thay \(B\) vào \(\frac{2}{3}A\), ta có: \(\frac{2}{3}A=\frac{3}{2}\left(\frac{1}{3}-\frac{1}{3^{101}}\right)-\frac{100}{3^{101}}\)

\(\Rightarrow A=\left[\frac{3}{2}\left(\frac{1}{3}-\frac{1}{3^{101}}\right)-\frac{100}{3^{101}}\right]:\frac{2}{3}=\frac{9}{4}\left(\frac{1}{3}-\frac{1}{3^{101}}\right)-\frac{150}{3^{101}}\)

\(A=\frac{3}{4}-\frac{9}{4}.\frac{1}{3^{101}}-\frac{150}{3^{101}}\Rightarrow A< \frac{3}{4}\)

Vậy \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)(ĐPCM)

Xong.

14 tháng 2 2020

Tui làm được câu 4