Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
2) Ta có : a = 10n + 8
Vì 10n = 2n.5n nên chia hết cho 2
Mà 8 chia hết cho 2
Nên : a = 10n + 8 chia hết cho 2
Ta có : a = 10n + 8 = 10......08 [(n + 1) số 0]
=> 1 + 0 + 0 + .... + 0 + 8 (n + 1 số 0 )
= 9 chia hết cho 3;9
1) đem chia p cho 2 xảy ra 2 trường hợp về số dư : dư 0 hoặc dư 1
+) nếu \(p\) chia cho 2 dư 0 \(\Rightarrow\) \(p⋮2\) ; mà \(p\) là số nguyên tố \(\Rightarrow p=2\)
khi đó \(p+3=2+3=5\) ( thỏa mãn )
\(p+5=2+5=7\) ( thỏa mãn )
\(p+11=2+11=13\) ( thỏa mãn )
+) nếu \(p\) chia cho 2 dư 1\(\Rightarrow\) \(p=2k+1\) ( \(k\in\) N* )
khi đó \(p+11=2k+1+11=2k+12=2\left(k+6\right)⋮2\)
mà \(p+11>2\Rightarrow p+11\) là hợp số ( loại )
vậy \(p=2\)
Bài 1 :
a)
Chứng minh chiều \("\Rightarrow"\) :
Ta có : \(abcd⋮99\Rightarrow ab.100+cd⋮99\)
\(\Rightarrow99ab+ab+cd⋮99\)
Mà : \(99ab⋮99\Rightarrow ab+cd⋮99\) ( đpcm )
Chứng minh chiều \("\Leftarrow"\) :
Ta có : \(ab+cd⋮99\)
\(\Rightarrow99ab+ab+cd⋮99\)
\(\Rightarrow100ab+cd⋮99\)
hay : \(abcd⋮99\) ( đpcm )
b) Ta có :
\(abcd=1000a+100b+10c+d\)
\(=100ab+cd\)
\(=200cd+cd=201cd\)
Mà \(201⋮67\Rightarrow ab=2cd⋮67\) ( đpcm )
c) Gọi số tự nhiên ba chữ số đó là \(aaa\)
Ta có : \(aaa=a.111=a.37.3⋮37\)
\(\Rightarrow\) Mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37 ( đpcm )
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
a) Ta có: 10^21 + 5=100...00(21 c/s 0) + 5=100....05(20 c/s 0)
-Để 100....05(20 c/s 0) chia hết cho 3 thì: 1+0+0+...+0+5 (20 c/s 0)=6 - chia hết cho 3. (1)
-mà 100....05(20 c/s 0) có c/s tận cùng là 5 => 100....05(20 c/s 0) chia hết cho 5 => 10^21 + 5 chia hết cho 5 (2)
Từ (1) và (2) => 10^21 + 5 chia hết cho 3 và 5
b)Ta có: 10^n + 8=100...00(n c/s 0) + 8=100....08(n-1 c/s 0)
-Để 100....08(n-1 c/s 0) chia hết cho 9 thì: 1+0+0+...+0+8 (n-1 c/s 0)=9 - chia hết cho 9. (1)
-mà 100....08(n-1 c/s 0) có c/s tận cùng là 8 => 100....08(n-1 c/s 0) chia hết cho 2 => 10^n + 8 chia hết cho 2 (2)
Từ (1) và (2) =>10^n + 8 chia hết cho 2 và 9 (n thuộc N*)
Tích cho mình nha