K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2023

Hiển nhiên \(P=4^{2010}+2^{2014}⋮2\). Ta chỉ cần chứng minh \(P⋮5\) là xong.

Trước hết ta chứng minh \(A=4^{2n}-1⋮5\), với mọi \(n\inℕ\)     (*)

 Với \(n=0\) thì \(A=0⋮5\). Với \(n=1\) thì \(A=15⋮5\).

 Giả sử (*) đúng đến \(n=k\). Với \(n=k+1\), ta có:

 \(A=4^{2\left(k+1\right)}-1\) \(=16.4^{2k}-1\) \(=16\left(4^{2k}-1\right)+15⋮5\), vậy (*) được chứng minh. Do đó \(4^{2010}-1⋮5\)              (1)

 Bây giờ ta sẽ chứng minh \(B=2^{4n+2}+1⋮5\) với mọi \(n\inℕ\).     (**)

 Với \(n=0\) thì \(B=5⋮5\). Với \(n=1\) thì \(B=65⋮5\).

 Giả sử (**) đúng đến \(n=k\). Với \(n=k+1\)  thì

 \(B=2^{4\left(k+1\right)+2}+1\) \(=16.2^{4k+2}+1\) \(=16\left(2^{4k+2}+1\right)-15⋮5\)

 Vậy (**) được chứng minh. Do đó \(2^{2014}+1⋮5\)         (2)

 Từ (1) và (2), suy ra \(P=4^{2010}+2^{2014}=\left(4^{2010}-1\right)+\left(2^{2014}+1\right)⋮5\)

 Như vậy \(2|P,5|P\Rightarrow10|P\) (đpcm)

6 tháng 8 2018

dell bik

6 tháng 8 2018

A.Ta có: abcabc = 1000abc + abc = 1001.abc 

Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố) 

=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13

B.Ta có: abcdeg = 1000abc + deg = 2001deg chia hết cho 23 và 29

C.Gọi số có 27chữ số 1 là A
A = 111...1 số có 9chữ số 1) x 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0)
Vì số 111...1 (số có 9cs 1) chia hết cho 9 (tổng các chữ số = 9)
số 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0) chia hết cho 3 (tổng các chữ số = 3)
=> A chia hết cho 9x3=27
Vậy.

3 k nhé..

19 tháng 9 2016

vào cpvm mà hỏi thầy

14 tháng 10 2021

4/ Chứng minh rằng :a.     76 +75 – 74 chia hết cho 11 . bạn nào giúp mình với (giải thích cho mình hiểu luôn nha các bạ... - Hoc24

14 tháng 10 2021

\(7^6+7^5-7^4\)

\(=7^4\left(7^2+7-1\right)\)

\(=7^4\cdot55⋮11\)

3 tháng 10 2015

10^12 -1 = 99....9999(11 cs 9)

  ta có : tổng các cs của 99999...999(11 cs9) là : 9+9+9...+9=99

 vì 99 chia hết cho 3, 9 nên 10^12-1 chia hết cho 3,9