K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+2}.2+2^{n+2}$

$=3^{n+1}(9+1)+2^{n+2}(2+1)$

$=3^{n+1}.10+2^{n+2}.3$

$=6.3^n.5+6.2^{n+1}=6(3^n.5+2^{n+1})\vdots 6$ (đpcm)

13 tháng 10 2023

A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)

= 3ⁿ⁺¹.(1 + 3²) + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 3ⁿ⁺¹.10 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 3ⁿ⁺¹.5.2 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 2.(3ⁿ⁺¹.5 + 2ⁿ⁺¹ + 2ⁿ⁺²) ⋮ 2   (1)

A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)

= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².(1 + 2)

= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².3

= 3.(3ⁿ + 3ⁿ⁺² + 2ⁿ⁺²) ⋮ 3   (2)

Từ (1) và (2) ⇒ A ⋮ 2 và A ⋮ 3

⇒ A ⋮ 6

13 tháng 10 2023

\(A=3^{n+1}+9.3^{n+1}+2^n.4+2^n.8\)

\(=3^{n+1}.10+4.2^n.3\)

\(=3^n.6.5+2^n.2.6⋮6\)

\(\Rightarrow A⋮6\left(đpcm\right)\)

18 tháng 8 2023

1) 3n ⋮ 2n - 5

=> 2(3n) - 3(2n - 5)  ⋮ 2n - 5

=> 6n - 6n + 15 ⋮ 2n - 5

=> 15 ⋮ 2n - 5

=> 2n-5 ϵ Ư(15)

Ư(15) = {1;-1;3;-3;5;-5;15;-15}

=> n={3;2;4 ;1;5;0;10;-5}

18 tháng 8 2023

nhớ nha

 

? Tìm n phải không bạn ?

8 tháng 10 2017

Giúp tớ làm đi mà! Tìm n đấy! Tớ k cho

17 tháng 10 2021

mn mn ơiii

17 tháng 10 2021

helllppppppppp

14 tháng 12 2022

    3n+4+3n+2 + 2n+3 + 2n+1

=  3n.( 34 + 32) + 2n.( 23+2)

= 3n.90 + 2n.10

= 10.( 3n.9+2n.5)

vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là ba số liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)

24 tháng 7 2016

Nếu n lẻ => n3+3n2 chẵn mà 2n chẵn nên n3+3n2+2n chia hết cho 2 

Nếu n chẵn => n3+3n2+2n chia hết cho 2 

Ta có : n3+3n2+2n = (n3-n)+3n2+(2n+n)=n(n2-1)+3n2+3n 

Nhìn vào ta thấy : 3n2 và 3n chia hết cho 3 

Nếu n chia hết cho 3 =>n(n2-1) chia hết cho 3 =>n(n2-1)=3n2+3n chia hết cho 3

Nếu n không chia hết cho 3 => n2 chia 3 dư 1 => n2-1 chia hết cho 3 =>n(n2-1) chia hết cho 3 =>n(n2-1)+3n2+3n chia hết cho 3 

Mà ( 3;2 ) = 1 nên n3+3n2+2n chia hết cho 6 

24 tháng 7 2016

\(n^3+3n^2+2n=n^3+3^2.n+2n=n^3+3^2+3n=n^3+9+3n\)

\(n.n.n.n.3+9=4n.12\)

Vì 12 chia hết cho 6 => 4n.12 chia hết cho 6

=> đpcm

 

\(1.3n+1\inƯ\left(10\right)\)

Ta lập bảng xét giá trị 

3n+11-12-25-510-10
3n0-21-34-69-11
n0-2/31/3-14/3-23-11/3

\(2.13⋮3n+1\)

\(\Rightarrow3n+1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

Ta lập bảng xét g trị

3n+11-113-13
n0-2/34-14/3

\(3.2n+8⋮2n+1\)

\(\Rightarrow\left(2n+1\right)+7⋮2n+1\)

\(\Rightarrow7⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng xét g trị

2n+11-17-7
2n0-26-8
n0-13-4

\(4.6n+6⋮2n+1\)

\(\Rightarrow6n+3+1⋮2n+1\)

\(\Rightarrow3.\left(2n+1\right)+1⋮2n+1\)

\(\Rightarrow1⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

Ta lập bảng xét g trị 

2n+11-1
2n0-2
n0-1


 

2 tháng 12 2019

Bài chứng minh hả bạn