K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

\(=3^{n+1}\left(3^2+3\right)+2^{n+1}\left(2^2+2\right)\)

\(=12.3^{n+1}+6.2^{n+1}=6\left(2.3^{n+1}+2^{n+1}\right)⋮6\)

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+2}.2+2^{n+2}$

$=3^{n+1}(9+1)+2^{n+2}(2+1)$

$=3^{n+1}.10+2^{n+2}.3$

$=6.3^n.5+6.2^{n+1}=6(3^n.5+2^{n+1})\vdots 6$ (đpcm)

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là ba số liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)

13 tháng 10 2023

A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)

= 3ⁿ⁺¹.(1 + 3²) + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 3ⁿ⁺¹.10 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 3ⁿ⁺¹.5.2 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 2.(3ⁿ⁺¹.5 + 2ⁿ⁺¹ + 2ⁿ⁺²) ⋮ 2   (1)

A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)

= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².(1 + 2)

= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².3

= 3.(3ⁿ + 3ⁿ⁺² + 2ⁿ⁺²) ⋮ 3   (2)

Từ (1) và (2) ⇒ A ⋮ 2 và A ⋮ 3

⇒ A ⋮ 6

13 tháng 10 2023

\(A=3^{n+1}+9.3^{n+1}+2^n.4+2^n.8\)

\(=3^{n+1}.10+4.2^n.3\)

\(=3^n.6.5+2^n.2.6⋮6\)

\(\Rightarrow A⋮6\left(đpcm\right)\)

18 tháng 8 2023

1) 3n ⋮ 2n - 5

=> 2(3n) - 3(2n - 5)  ⋮ 2n - 5

=> 6n - 6n + 15 ⋮ 2n - 5

=> 15 ⋮ 2n - 5

=> 2n-5 ϵ Ư(15)

Ư(15) = {1;-1;3;-3;5;-5;15;-15}

=> n={3;2;4 ;1;5;0;10;-5}

18 tháng 8 2023

nhớ nha

 

14 tháng 12 2022

    3n+4+3n+2 + 2n+3 + 2n+1

=  3n.( 34 + 32) + 2n.( 23+2)

= 3n.90 + 2n.10

= 10.( 3n.9+2n.5)

vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)

24 tháng 7 2016

Nếu n lẻ => n3+3n2 chẵn mà 2n chẵn nên n3+3n2+2n chia hết cho 2 

Nếu n chẵn => n3+3n2+2n chia hết cho 2 

Ta có : n3+3n2+2n = (n3-n)+3n2+(2n+n)=n(n2-1)+3n2+3n 

Nhìn vào ta thấy : 3n2 và 3n chia hết cho 3 

Nếu n chia hết cho 3 =>n(n2-1) chia hết cho 3 =>n(n2-1)=3n2+3n chia hết cho 3

Nếu n không chia hết cho 3 => n2 chia 3 dư 1 => n2-1 chia hết cho 3 =>n(n2-1) chia hết cho 3 =>n(n2-1)+3n2+3n chia hết cho 3 

Mà ( 3;2 ) = 1 nên n3+3n2+2n chia hết cho 6 

24 tháng 7 2016

\(n^3+3n^2+2n=n^3+3^2.n+2n=n^3+3^2+3n=n^3+9+3n\)

\(n.n.n.n.3+9=4n.12\)

Vì 12 chia hết cho 6 => 4n.12 chia hết cho 6

=> đpcm

 

17 tháng 10 2021

mn mn ơiii

17 tháng 10 2021

helllppppppppp

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

5 tháng 7 2017

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}