Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)
\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)
\(3+3^2+3^3+...+3^{60}\\ =\left(3+3^2+3^3+3^4\right)=\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\\ =3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\\ =3.40+3^5.40+...+3^{57}.40\\ =\left(3+3^5+...+3^{57}\right).40⋮5\left(Vì:40⋮5\right)\)
\(A=3+3^2+3^3+...+3^{60}\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)
\(A=3.40+...+3^{57}.40\)
\(A=40\left(3+3^5...+3^{57}\right)\)
mà \(40⋮5\)
\(\Rightarrow A⋮5\left(dpcm\right)\)
Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰
= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)
= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)
= 3.4 + 3³.4 + ... + 3⁹⁹.4
= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4
Vậy A ⋮ 4
\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{58}.13=13\left(3+3^4+...+3^{58}\right)⋮13\)
\(A=3+3^2+3^3+...+3^{60}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\)
\(\Rightarrow A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=\left(3+3^5+...+3^{57}\right)\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40\left(3+3^5+...+3^{57}\right)⋮40\)
a) B\(=\) 3 + 32 + 33 + ... + 360
\(=\)(3+32)+(33+34)+...+(359+360)
\(=\)3(1+3)+33(1+3)+...+359(1+3)
\(=\)(3+1)(3+33+...+359)
\(=\)4(3+33+...+359)⋮4
⇒B⋮4
b) B\(=\)(3+32+33)+...+(358+359+360)
\(=\)30(3+32+33)+...+357(358+359+360)
\(=\)3+32+33(30+33+36+...+357)
\(=\)39(30+33+36+...+357)⋮13
⇒ B⋮13
Vì 3 lũy thừa liên tiếp từ lũy thừa đầu tiên cộng lại chia hết cho 3
Mà 60 chia hết cho 3 nên tổng này chia hết cho 3
Đặt A = 31 + 32 + 33 +...+ 360 ( có 60 số hạng)
A = (31 + 32 + 33) + (34 + 35 + 36) + ...+ (358 + 359 + 360) ( có 20 nhóm số hạng)
A = 3.(1+3+32) + 34.(1+3+32) + ...+ 358.(1+3+32)
A = 3.13 + 34.13 + ...+ 358.13
A = 13.(3+34+...+358) chia hết cho 13