K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

\(x^8-y^8=\left(x^4-y^4\right)\left(x^4+y^4\right)=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)⋮\left(x-y\right)\)\(\left(x+y\right)\)(đpcm)

28 tháng 6 2018

thêm x;y thuộc z nhé

\(x^8-y^8=\left(x^4\right)^2-\left(y^4\right)^2=\left(x^4-y^4\right)\left(x^4+y^4\right)=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)

vì \(x-y⋮x-y;x,y\in Z\Rightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)⋮x-y\Rightarrow x^8-y^8⋮x-y\)

\(x+y⋮x+y;x,y\in Z\Rightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)⋮x+y\Rightarrow x^8-y^8⋮x+y\)

28 tháng 6 2018

Cảm ơn bạn nha! Bài bạn làm đúng rồi nhé!

3 tháng 11 2015

a. Do \(x=y-1\Rightarrow x-y=1\)

Ta có:

\(A=x^3-y^3-3xy=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1^3+3xy.1-3xy=1\left(đpcm\right)\)

b. \(B=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)

(Do \(x-y=1\))

(Bạn áp dụng hằng đẳng thức \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)vào bài toán)

Kết quả, \(B=x^{16}-y^{16}\left(đpcm\right)\)

 

 

3 tháng 11 2015

a)\(x=y+1\Rightarrow x-y=1\Rightarrow\left(x-y\right)^3=1\)

Hay x3- 3xy(x-y) -  y3=1  => x3- y3 -3xy =1

b) 1.(x+y)(x2+y2)(x4+y4)(x8+y8) = (x-y)(x+y)......................=(x2-y2)(x2+y2)..........=(x4-y4)(x4+y4)......=(x8-y8)(x8+y8) =x16-y16

30 tháng 11 2022

Bài 3:

x=y+1 nên x-y=1

\(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)

\(=\left(x+y\right)\cdot\left(x-y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)

=x^8-y^8

2 tháng 10 2017

Ta có \(x-y=1\)

\(=>x+y=\left(x+y\right).\left(x-y\right)\)
\(A=\left(x+y\right).\left(x-y\right).\left(x^2+y^2\right).\left(x^4+y^4\right)\)

\(A=\left(x^2-y^2\right).\left(x^2+y^2\right).\left(x^4+y^4\right)\)

\(A=\left(x^4-y^4\right).\left(x^4+y^4\right)\)

\(A=x^8-y^8\)

C
18 tháng 9 2019

\(-\left[\left(x-y\right)\left(x^2-y^2\right)\left(x^4-y^4\right)\left(x^8-y^8\right)\left(x^{16}-y^{16}\right)\right]\)

\(-\left[\left(x-y\right)\left(x-y\right)^2\left(x-y\right)^4\left(x-y\right)^8\left(x-y\right)^{16}\right]\)

\(-\left(1\cdot1^2\cdot1^4\cdot1^8\cdot1^{16}\right)\)

= -1

=(x^2-y^2)(X^2+y^2)(X^4+y^4)(x^8+y^8)

=(x^4-y^4)(x^4+y^4)(x^8+y^8)

=(x^8-y^8)(x^8+y^8)

=x^16 - y^ 16

IF you can , give my answer a k

18 tháng 9 2019

Bạn áp dụng hằng đẳng thức x2 - y2 = (x-y)(x+y) 

\(\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)

\(=\left(x^4-y^4\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)

\(=\left(x^8-y^8\right)\left(x^8+y^8\right)=x^{16}-y^{16}\)

21 tháng 2 2022

Theo bđt AM-GM 

\(x+\dfrac{1}{x}\ge2\sqrt{\dfrac{x.1}{x}}=2\Rightarrow\left(x+\dfrac{1}{x}\right)^2\ge4\)

\(y+\dfrac{1}{y}\ge2\sqrt{\dfrac{y.1}{y}}=2\Rightarrow\left(y+\dfrac{1}{y}\right)^2\ge4\)

Cộng vế với vế ta có đpcm 

Dấu ''='' xảy ra khi x = y = 1 

 

26 tháng 11 2023

\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\left(dkxd:x\ne0,x\ne5\right)\\ =\dfrac{3x-x-1}{x\left(x-5\right)}=\dfrac{2x-1}{x^2-5x}\)

----------------------------------------

\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\left(dkxd:x\ne0,y\ne-2\right)\\ =\dfrac{8}{4}.\dfrac{15x^2.x^3}{3x^2}=10x^3\)

------------------------------------------

\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\left(dkxd:x\ne1,x\ne-1\right)\\ =\dfrac{8\left(y-1\right)}{3\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)^2}{4\left(y-1\right)^3}\\ =\dfrac{2\left(x-1\right)}{3\left(x+1\right)\left(y-1\right)^2}\)