\(x=-7\) không phải là nghiệm của bất phương trình \(x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Ta có: điều kiện xác định của bpt \(x+3-\dfrac{1}{x+7}< -\dfrac{1}{x+7}\)\(x\ne-7\)

\(\Rightarrow x=-7\) không phải là nghiệm của bpt trên

Lại có: \(x+3< 2\\ \Leftrightarrow x< 2-3\\ \Leftrightarrow x< -1\)

\(\Rightarrow x=-7\) thỏa mãn bpt \(x+3< 2\) \(\left(-7< -1\right)\)

8 tháng 5 2017

Thay \(x=-3\) vào bất phương trình (1) ta được:
\(3.\left(-3\right)+1< -3+3\)\(\Leftrightarrow-8< 0\) ( đúng)
Vậy \(x=-3\) là nghiệm của bất phương trình (1)
TThay \(x=-3\) vào bất phương trình (2) ta được:
\(\left(3.\left(-3\right)+1\right)^2< \left(-3+3\right)^2\)\(\Leftrightarrow64< 0\) (vô lý).
Vậy \(x=-3\) là nghiệm của bất phương trình (2).
Vậy hai bất phương trình (1) và (2) không tương đương và bình phương hai vế của bất phương trình không là phép biến đổi tương đương.

8 tháng 4 2017

a) Gọi D là điều kiện xác định của biểu thức vế trái D = [- 8; +∞]. Vế trái dương với mọi x ∈ D trong khi vế phải là số âm. Mệnh đề sai với mọi x ∈ D. Vậy bất phương trình vô nghiệm.

b) Vế trái có ≥ 1 ∀x ∈ R,

≥ 1 ∀x ∈ R

=> + ≥ 2 ∀x ∈ R.

Mệnh đề sai ∀x ∈ R. Bất phương trình vô nghiệm.

c) ĐKXĐ: D = [- 1; 1]. Vế trái âm với mọi x ∈ D trong khi vế phải dương.

8 tháng 5 2017

a) Ta có: \(x^2+\dfrac{1}{x^2+1}=x^2+1+\dfrac{1}{x^2+1}-1\)\(\ge2\sqrt{\left(x^2+1\right).\dfrac{1}{x^2+1}}-1=2-1=1\).
Vì vậy: \(x^2+\dfrac{1}{x^2+1}\ge1\) nên BPT vô nghiệm.

8 tháng 5 2017

b) Áp dụng BĐT Cô-si ta có:
\(\sqrt{x^2-x+1}+\dfrac{1}{\sqrt{x^2-x+1}}\ge\)\(2\sqrt{\left(x^2-x+1\right).\dfrac{1}{x^2-x+1}}=2\).
Vì vậy BPT vô nghiệm.

15 tháng 4 2017

a)

<=> f(x) = .

Xét dấu của f(x) ta được tập nghiệm của bất phương trình:

T = ∪ [3; +∞).

b)

<=> f(x) = = .

f(x) không xác định với x = ± 1.

Xét dấu của f(x) cho tập nghiệm của bất phương trình:

T = (-∞; - 1) ∪ (0; 1) ∪ (1; 3).

c) <=> f(x) =

= .

Tập nghiệm: \(\left(-12;-4\right)\cup\left(-3;0\right)\).

14 tháng 2 2018

ta có : \(\dfrac{x+4}{x^2-9}-\dfrac{2}{x+3}< \dfrac{4x}{3x-x^2}\)

\(\Leftrightarrow\dfrac{x+4}{x^2-9}-\dfrac{2}{x+3}-\dfrac{4x}{3x-x^2}< 0\)

\(\Leftrightarrow\dfrac{x+4}{\left(x+3\right)\left(x-3\right)}-\dfrac{2}{x+3}-\dfrac{4x}{x\left(3-x\right)}< 0\)

\(\Leftrightarrow\dfrac{x+4}{\left(x+3\right)\left(x-3\right)}-\dfrac{2}{x+3}+\dfrac{4}{x-3}< 0\)

\(\Leftrightarrow\dfrac{x+4-2\left(x-3\right)+4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}< 0\)

\(\Leftrightarrow\dfrac{x+4-2x+6+4x+12}{\left(x+3\right)\left(x-3\right)}< 0\) \(\Leftrightarrow\dfrac{3x+22}{\left(x+3\right)\left(x-3\right)}< 0\)

ta có : \(3x+22=0\Leftrightarrow x=\dfrac{-22}{3}\)

\(x+3=0\Leftrightarrow x=-3\)

\(x-3=0\Leftrightarrow x=3\)

\(\Rightarrow\) BXD :

\(x\) \(-\infty\) \(\dfrac{-22}{3}\) \(-3\) \(3\) \(+\infty\)
\(3x+22\) \(-\) \(-\) \(0\) \(+\) \(16\) \(+\) \(28\) \(+\) \(+\)
\(x+3\) \(-\) \(-\) \(\dfrac{-13}{3}\) \(-\) \(0\) \(+\) \(6\) \(+\) \(+\)
\(x-3\) \(-\) \(-\) \(\dfrac{-31}{3}\) \(-\) \(-6\) \(-\) \(0\) \(+\) \(+\)
\(\dfrac{3x+22}{\left(x+3\right)\left(x-3\right)}\) \(-\) \(-\) \(0\) \(+\) oxd \(-\) oxđ \(+\) \(+\)

\(\Rightarrow S=\left(-\infty;\dfrac{-22}{3}\right)\cup\left(-3;3\right)\)

vậy ...........................................................................................................

8 tháng 5 2017

a) Đkxđ: \(x-5\ne0\Leftrightarrow x\ne5\).
b) Đkxđ: \(x\in R\).
c) Đkxđ: \(x^2-x-2\ge0\)\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\ge0\)
Th1: \(\left\{{}\begin{matrix}x-1\ge0\\x-2\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ge2\end{matrix}\right.\)\(\Leftrightarrow x\ge2\).
Th2: \(\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x< 2\end{matrix}\right.\)\(\Leftrightarrow x< 1\).
Đkxđ: \(\left[{}\begin{matrix}x\ge2\\x< 1\end{matrix}\right.\).
d) Đkxđ: \(x\in R\).

15 tháng 4 2017

a) <=>

Miền nghiệm của hệ bất phương trình là miền không bị gạch sọc ở hình bên (không kể các điểm).

b) <=>

Miền nghiệm của hệ bất phương trình là miền tam giác ABC bao gồm cả các điểm trên cạnh AC và cạnh BC (không kể các điểm của cạnh AB).