K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

nếu n là chẵn thì (4+n) là chẵn thì (4+n)(5+n)*2

nếu n là lẻ thì 5+n là chẵn thì (4+n)(5+n)*2

vậy với mọi n thì tích (4+n)(5+n)*2

dấu * là dấu chia hết nhé

12 tháng 8 2016

+ Nếu n lẻ thì n + 3 chẵn => n + 3 chia hết cho 2 => (n + 3) × (n + 6) chia hết cho 2

+ Nếu n chẵn thì n + 6 chẵn => n + 6 chia hết cho 2 => (n + 3) × (n + 6) chia hết cho 2

Vậy với mọi n thuộc N thì (n + 3) × (n + 6) luôn chia hết cho 2

12 tháng 8 2016

Nếu n thuộc N thì n có 3 trường hợp là n = {lẻ ; chẵn ; 0}

Th1: Nếu n = 0 thì  => (n + 3) . (n + 6) = 3.6 = 18 chia hết cho 2

Th2: Nếu n = chẵn thì n = 2k  => (n + 3) . (n + 6) = (2k + 3) . (2k + 6

                                                                            = 2.(2k + 3).(k + 3)  chia hết cho 2

Th3: 

20 tháng 10 2017

1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)

     +Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)

2)Tg tự câu a

19 tháng 12 2021

1 + 1 = 

em can gap!!!

Nhanh e k cho

17 tháng 10 2021

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha


 

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)


b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

26 tháng 12 2015

Mọi số tự nhiên n đều đc viết dưới dạng : 2k hoặc 2k + 1

+ Nếu n = 2k => n + 4 = 2k + 4 chia hết choa 2

=> ( n + 4 ) ( n + 5 ) chia hết cho 2

+ Nếu n = 2k + 1 => n + 5 = 2k +1 + 5 = 2k + 6 chia hết cho 2

=> ( n + 4 ) ( n + 5 ) chia hết cho 2

Vậy : Với mọi số tự nhiên n thì ( n + 4 ) ( n + 5 ) chia hết cho 2

7 tháng 12 2018

Xét 3 trường hợp xảy ra của n :

+) n là số chẵn => n + 4 là số chẵn

=> ( n + 4 ) ( n + 7 ) là số chẵn

=> ( n + 4 ) ( n + 7 ) ⋮ 2 ( đpcm )

+) n là số lẻ => n + 7 là số chẵn

=> ( n + 4 ) ( n + 7 ) là số chẵn

=> ( n + 4 ) ( n + 7 ) ⋮ 2 ( đpcm )

+) n bằng 0 => n + 4 = 4 là số chẵn

=> ( n + 4 ) ( n + 7 ) là số chẵn

=> ( n + 4 ) ( n + 7 ) ⋮ 2 ( đpcm )

Vậy ta có với mọi n thì ( n + 4 ) ( n + 7 ) chia hết cho 2 

7 tháng 12 2018

*Nếu n chẵn

=> n + 4 chẵn

=> (n +4)(n + 7) chẵn

=> (n + 4)(n + 7) chẵn

=> tích này chia hết cho 2

* Nếu n lẻ

=> n + 7 chẵn

=> (n + 4)(n + 7) chẵn

=> tích này chia hết cho 2

Vậy ...........