Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
- Nếu n ⋮ 2 thì n = 2k ( k ∈ N)
Suy ra : n + 6 = 2k + 6 = 2(k + 3)
Vì 2(k + 3) ⋮ 2 nên (n + 3).(n + 6) ⋮ 2
- Nếu n không chia hết cho 2 thì n = 2k + 1 (k ∈ N)
Suy ra: n + 3 = 2k + 1 + 3 = 2k + 4 = 2(k + 2)
Vì 2(k + 2) ⋮ 2 nên (n + 3).(n + 6) ⋮ 2
Vậy (n + 3).(n+ 6) chia hết cho 2 với mọi số tự nhiên n.
ta có n+1,n+2,n+3 là 3 stn liên tiếp nên có ít nhất 1 số chẵn và có 1 số chia hết cho 3
suy ra (n+1)(n+2)(n+3) chia hết cho 2.3=6
tik mik nha
Tham khảo
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
Vì n+1;n+2;n+3 là ba số tự nhiên liên tiếp
nên \(\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3!\)
hay \(\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮6\)
ta sẽ có 2 trường hợp:1 là số chẵn;2 là số lẻ
Nếu n là số chẵn thì khi nhân với bất kì số nào cug chia hết cho 2 =>n.(n+3).(n+6) chia hết cho 2
Vd 1 số chẵn:6.(6+3).(6+6) chia hết cho 2
Nếu n là số chẳn thì ta có (n+3) là số chẵn;(n+6) là số lẻ thì số chắn nhân số lẻ là mốt số chẵn và bất cứ số chẵn nào cug chia hết cho 2=>n.(n+3).(n+6) chia hết cho 2
Vd 1 số lẻ:5.(5+3).(5+6) chia hết cho 2
Vấy bất cứ số tự nhiên N nào cug chia hết cho 2
Trong một tích có một thừa số chẵn thì tích đấy chẵn
Giả sử n là số lẻ thì n+3 là số chẵn ( lẻ + lẻ = chẵn ) , suy ra tích là số chẵn
n là số chẵn n+6 là số chẵn ( chẵn + chẵn = chẵn ) , suy ra tích là số chẵn
Kết luận : tích (n+3)( n+6) luôn chia hết cho 2 với mọi số tự nhiên n
1.
Chứng minh
(a). Giả sử n là 1 số lẻ ta có ̃n+3 là 1 số chẵn và n + 6 là 1 số lẻ => (n +3).(n + 6) là 1 số chẵn.
(b). Giả sử n là 1 số chẵn ta có n + 3 là 1 số lẻ và n + 6 là 1 số chẵn => (n + 3).(n + 6) là 1 số chẵn.
(c). Với mọi số tự nhiên n ta có (n + 3).(n + 6) > 18.
Từ (a),(b),(c) ta có thể kết luận rằng với mọi số tự nhiên n thì tích (n + 3).(n + 6) luôn chia hết cho 2.
2.
Nếu n = 2k thì n + 6 = 2k + 6 chia hết cho 2
Nếu n = 2k + 1 thì n + 3 = 2k + 4 chia het cho 2
Vậy (n+3) . (n+6) chia hết cho 2
Với x lẻ thì x + 3 chẵn, tích ( x + 3 ) ( x + 6 ) là chẵn nên chia hết cho 2.
Với x chẵn thì x + 6 chẵn, tích ( x + 3 ) ( x + 6 ) là chẵn nên chia hết cho 2.
Vậy ( x + 3 ) ( x + 6 ) luôn chia hết cho 2 với mọi số tự nhiên x.