K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

  + Xét TH1: n chẵn

Suy ra n chia hết 2, do đó n(n + 5) cũng chia hết cho 2.

   + Xét TH2: n lẻ

Suy ra n + 5 chẵn

Do đó (n + 5) chia hết 2

Vậy n(n +5) chia hết cho 2.

8 tháng 11 2017

TA CÓ

+ Nếu n chia hết cho 2 thì nx(n+5) chia hết cho 2 thì bài toán đã được chứng minh

+Nếu n ko chia hết cho 2 thì n = 2k+1 suy ra n+5 =2k+5+1=2k+6

mà 2k chia hết cho 2 và 6 chia hết cho 2 nên n+5 chia hết cho 2

suy ra n(n+5) chia hết cho 2

Vậy n(n+5) luôn chia hết cho 2 (đpcm)

11 tháng 1 2018

Nếu n = 2k => n chia hết cho 2

=> n(n + 5) chia hết cho 2

Nếu n = 2k + 1 => n + 5 = 2k + 1 + 5 = 2k + 6 chia hết cho 2

=> n + 5 chia hết cho 2

=> n(n + 5) chia hết cho 2

Vậy với mọi số tự nhiên n thì tích n(n + 5) chia hết cho 2.

n(n + 5) = n2 + 5n

+ Nếu n là lẻ thì n2 và 5n đều là lẻ. Khi đó n2 + 5n là chẵn.  n2 + 5n  2

+ Nếu n là chẵn thì n2 và 5n đều là chẵn. Khi đó n2 + 5n là chẵn.  n2 + 5n  2

 ĐPCM

22 tháng 10 2016

xét 2 trường hợp:

+ TH1: n chẵn, tức n = 2k.

n.(n+5)=2k.(2k+5) chia hết cho 2.

+ TH2: n lẻ, tức n = 2k+1

n.(n+5)=(2k+1).(2k+6)= (2k+1).2.(k+3) chia hết cho 2.

Vậy với mọi n thì n.(n+5) chia hết cho 2

9 tháng 1 2018

Với n = 2k => n chia hết cho 2

=> n(n + 5) chia hết cho 2

Với n = 2k + 1

=> n + 5 = 2k + 1 + 5 = 2k + 6 chia hết cho 2

=> n + 5 chia hết cho 2

=> n(n + 5) chia hết cho 2

Vậy với mọi số tự nhiên n thì tích n(n + 5) chia hết cho 2.

12 tháng 11 2015

dài quá bạn hỏi từng câu nhé

12 tháng 11 2015

bạn chia thành ngắn í,dài khong thích đọc

20 tháng 11 2019

Với mọi số tự nhiên n.

Ta có: \(n^2+n+1=n\left(n+1\right)+1\)

Do n; n + 1 là hai số tự nhiên liên tiếp 

=> n ( n + 1) chia hết cho 2.

=> n ( n+ 1)  + 1 không chia hết chia hết cho 2

=> \(n^2+n+1\)không chia hết cho 2

=> \(n^2+n+1\) không chia hết cho 4.

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4