Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 3 trường hợp xảy ra của n :
+) n là số chẵn => n + 4 là số chẵn
=> ( n + 4 ) ( n + 7 ) là số chẵn
=> ( n + 4 ) ( n + 7 ) ⋮ 2 ( đpcm )
+) n là số lẻ => n + 7 là số chẵn
=> ( n + 4 ) ( n + 7 ) là số chẵn
=> ( n + 4 ) ( n + 7 ) ⋮ 2 ( đpcm )
+) n bằng 0 => n + 4 = 4 là số chẵn
=> ( n + 4 ) ( n + 7 ) là số chẵn
=> ( n + 4 ) ( n + 7 ) ⋮ 2 ( đpcm )
Vậy ta có với mọi n thì ( n + 4 ) ( n + 7 ) chia hết cho 2
*Nếu n chẵn
=> n + 4 chẵn
=> (n +4)(n + 7) chẵn
=> (n + 4)(n + 7) chẵn
=> tích này chia hết cho 2
* Nếu n lẻ
=> n + 7 chẵn
=> (n + 4)(n + 7) chẵn
=> tích này chia hết cho 2
Vậy ...........
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
Ta có n có thể là chẫn hoặc lẻ
Nếu n chẵn thì n = 2k
Thay vào ta có : (2k + 4)(2k + 5) = 2.(k + 2)(2k + 5) chia hết cho 2
Nếu n lẻ thì n = 2k + 1
Thay vào ta có: (2k + 5)(2k + 6) = 2.(2k + 5)(k + 3) chia hết cho 2
Vậy với mội số tự nhiên n (n + 4)(n + 5) đều chia hết cho 2
Vì tích trên là tích của 2 số tự nhiên liên tiếp nên luôn luôn tận cùng là 0,2.6.
Mà các số có tận cùng là 0,2,6 đều chia hết cho 2 nên tích (n+4)(n+5)luôn luôn chia hết cho 2.
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
vì n+4 là n+5 là hai số liên tiếp nên 1 trong hai số sẽ chia hết cho 2
=>(n+4).(n+5) chia hết cho 2 (đpcm)
Có 2 trường hợp
1 . Với k là số chẵn (2k với k thuộc N) ta có
2k.(2k + 5)
= 4 k
2 +10 k
= 2.(2k
2 + 5k) [ chia hết cho 2]
2 . Với k là số lẻ ( 2k + 1 với k thuộc N) ta có
(2k +1) ( 2k + 1 + 5)
= 2k.(2k+6) + 2k + 6
= 4k
2 + 12k + 2k + 6
= 2. ( 2k
2 + 6k + k + 3) [ chia hết cho 2]
* Nếu n lẻ :
\(\Rightarrow\)\(n+5\) chẵn
Mà tích của 1 số chẵn và 1 số lẻ chia hết cho 2 nên \(n\left(n+5\right)⋮2\)
* Nếu n chẵn :
\(\Rightarrow\)\(n+5\) lẻ
Mà tích của 1 số chẵn và 1 số lẻ chia hết cho 2 nên \(n\left(n+5\right)⋮2\)
Vậy với mọi số tự nhiên n thì \(n\left(n+5\right)⋮2\)
Chúc bạn học tốt ~