Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 2 trường hợp
1 . Với k là số chẵn (2k với k thuộc N) ta có
2k.(2k + 5)
= 4 k
2 +10 k
= 2.(2k
2 + 5k) [ chia hết cho 2]
2 . Với k là số lẻ ( 2k + 1 với k thuộc N) ta có
(2k +1) ( 2k + 1 + 5)
= 2k.(2k+6) + 2k + 6
= 4k
2 + 12k + 2k + 6
= 2. ( 2k
2 + 6k + k + 3) [ chia hết cho 2]
* Nếu n lẻ :
\(\Rightarrow\)\(n+5\) chẵn
Mà tích của 1 số chẵn và 1 số lẻ chia hết cho 2 nên \(n\left(n+5\right)⋮2\)
* Nếu n chẵn :
\(\Rightarrow\)\(n+5\) lẻ
Mà tích của 1 số chẵn và 1 số lẻ chia hết cho 2 nên \(n\left(n+5\right)⋮2\)
Vậy với mọi số tự nhiên n thì \(n\left(n+5\right)⋮2\)
Chúc bạn học tốt ~
vì n+4 là n+5 là hai số liên tiếp nên 1 trong hai số sẽ chia hết cho 2
=>(n+4).(n+5) chia hết cho 2 (đpcm)
Xét 3 số tự nhiên liên tiếp \(2005^n,2005^n+1,2005^n+2\) luôn có ít nhất 1 số chia hết cho 3
Mà:\(2005\equiv1\)(mod 3)
\(\Rightarrow2005^n\equiv1^n=1\)(mod 3)
\(\Rightarrow2005^n\) không chia hết cho 3
Nên trong 2 số \(2005^n+1,2005^n+2\) luôn có 1 số chia hết cho 3
\(\Rightarrow\left(2005^n+1\right)\left(2005^n+2\right)⋮3\)
Xét \(n=2k\left(k\in N\right)\)Ta có :
\(\left(2005^n+1\right)\left(2005^n+2\right)=\left(2005^{2k}+1\right)\left(2005^{2k}+2\right)\)
\(=\left(2005^{2k}+1\right)\left(2005^{2k}-1+3\right)\)
Vì \(2005^{2k}-1⋮2004⋮3\) do đó \(\left(2005^n+1\right)\left(2005^n+2\right)⋮3\)
Xét \(n=2k+1\) thì \(2005^n+1=2005^{2k+1}+1⋮2007⋮3\)
Ta có ngay ĐPCM
xét n là số lẻ
=>(n+3) là số chẵn =>(n+3) (n+12) chia hết cho 2
xét n là số chẵn
=.(n+12) là số chẵn =>(n+3) (n+12) chia hết cho 2
de co
goi d la UC(2n+3;4n+8)
2n+3⋮d
4n+8⋮d
(2n+3)-(4n+8)⋮d
2(2n+3)-1(4n+8)⋮d
(4n+6)-(4n+8)⋮d
-2⋮d
maf d la so le khong phai la so chan
-1⋮d
d ϵ {1;-1}
suy ra \(\dfrac{2n+3}{4n+8}\)la phan so toi gian voi moi so n
Xét 3 trường hợp xảy ra của n :
+) n là số chẵn => n + 4 là số chẵn
=> ( n + 4 ) ( n + 7 ) là số chẵn
=> ( n + 4 ) ( n + 7 ) ⋮ 2 ( đpcm )
+) n là số lẻ => n + 7 là số chẵn
=> ( n + 4 ) ( n + 7 ) là số chẵn
=> ( n + 4 ) ( n + 7 ) ⋮ 2 ( đpcm )
+) n bằng 0 => n + 4 = 4 là số chẵn
=> ( n + 4 ) ( n + 7 ) là số chẵn
=> ( n + 4 ) ( n + 7 ) ⋮ 2 ( đpcm )
Vậy ta có với mọi n thì ( n + 4 ) ( n + 7 ) chia hết cho 2
*Nếu n chẵn
=> n + 4 chẵn
=> (n +4)(n + 7) chẵn
=> (n + 4)(n + 7) chẵn
=> tích này chia hết cho 2
* Nếu n lẻ
=> n + 7 chẵn
=> (n + 4)(n + 7) chẵn
=> tích này chia hết cho 2
Vậy ...........