K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

Gọi ƯCLN(2n+1;3n+1)=a (a thuộc N*)

=> 2n+1 chia hết cho a; 3n+1 chia hết cho a

=> 3(2n+1) chia hết cho a; 2(3n+1) chia hết cho a

=> 6n+3 chia hết cho a; 6n+2 chia hết cho a

=> (6n+3)-(6n+2) chia hết cho a

=> (6n-6n)+(3-2) chia hết cho a

=> 1 chia hết cho a

=> a=1 

=> UWCLN(2n+1;3n+1)=1

=> 2n+1 và 3n+1 nguyên tố cùng nhau

Vậy với mọi n thì 2n+1 và 3n+1 nguyên tố cùng nhau

12 tháng 12 2017

Gọi ƯCLN(2n+1;3n+1)=a (a thuộc N*)
=> 2n+1 chia hết cho a; 3n+1 chia hết cho a
=> 3(2n+1) chia hết cho a; 2(3n+1) chia hết cho a
=> 6n+3 chia hết cho a; 6n+2 chia hết cho a
=> (6n+3)-(6n+2) chia hết cho a
=> (6n-6n)+(3-2) chia hết cho a
=> 1 chia hết cho a
=> a=1
=> UWCLN(2n+1;3n+1)=1
=> 2n+1 và 3n+1 nguyên tố cùng nhau
Vậy với mọi n thì 2n+1 và 3n+1 nguyên tố cùng nhau

chúc bn hok tốt @_@

25 tháng 3 2021

đừng để anh nóng hơi mệt đấy

9 tháng 12 2015

Gọi  d = (A=3n+5 ;B=2n+3) => A ; B chia hết cho d

=> 2A -3B = 2(3n+5) - 3(2n+3) = 6n  +10 - 6n -9  =1 chia hết cho d

=> d =1

Vậy (A;B) =1

9 tháng 12 2015

chung mik la mih ngu nhatv 

18 tháng 12 2022

a: Gọi d=ƯCLN(n+3;n+2)

=>n+3-n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>n+2 và n+3 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+3;3n+5)

=>6n+9-6n-10 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>2n+3 và 3n+5là hai số nguyên tố cùng nhau

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

2 tháng 12 2015

gọi d là UCLN ( 3n+5, 2n+3 )

=>3n+5 chia hết cho d

=>2n+3 chia hết cho d

=>2.(3n+5) chia hết cho d

=>3.(2n+3) chia hết cho d

=>6n+10 chia hết cho d

=>6n+9 chia hết cho d

=>6n+10-(6n+9) = d

=>6n+10-6n-9 =d

=>      1         = d

=> 3n+5 và 2n+3 là hai số nguyên tố cùng nhau

Gọi d=ƯCLN(2n+1;2n^2-1)

=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d

=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d

=>n+1 chia hết cho d và 2n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau

23 tháng 9 2023

Đc gần 1 năm r nè:)

27 tháng 10 2023

a: Gọi d=ƯCLN(6n+5;2n+1)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)

=>\(2⋮d\)

mà 2n+1 là số lẻ

nên d=1

=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(3n+2;5n+3)

=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

=>\(15n+10-15n-9⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau

25 tháng 1 2015

Gọi ƯCLN 2 số trên là a

2n+1 chia hết cho a=> 3(2N+1)chia hết cho a=> 6n+3 chia hết cho a(1)

 3n+1chia hết cho a=>2(3N+1)chia hết cho a=>6N+2 chia hết cho a(2)

tỪ (1) VÀ (2), TA CÓ (6n+3)-(6n+2) chia hết cho a

=> 1 chia hết cho a

=>a=1

vậy n+1 va 3n+1(n la so tu nhien) la hai so nguyen to cung nhau

 

26 tháng 12 2021

b) gọi d = ƯCLN(2n + 3; 3n + 5)

--> 3(2n + 3) và 2(3n + 5) chia hết cho d

--> (6n + 10) - (6n + 9) chia hết cho d

--> 1 chia hết cho d

--> d = 1

--> 2n + 3 và 3n + 5 nguyên tố cùng nhau

26 tháng 12 2021

a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp

nên n+2 và n+3 là hai số nguyên tố cùng nhau