Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Nếu m chia hết cho 2 thì ta có điều cần chứng minh
Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2
b) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Ta có: n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3
=> ĐPCM
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
Gọi 3 stn liên tiếp là: a;a+1;a+2
Ta có : a+a+1+a+2=3a+(1+2)=3a+3
Mà 3a chia hết cho 3 ; 3 chia hết cho 3
Nên 3a+3 chia hết cho 3
Vậy tổng 3 stn liên tiếp chia hết cho 3
Gọi 3 số tự nhiên liên tiếp đó lần lượt là a;a+1;a+2
ta có :a+(a+1)+(a+2)=3a +3=3.(a+1) chia hết cho3
Vậy 3 số tự nhiên liên tiếp chia hết cho 3
mik ko bít
I don't now
................................
.............
Goi 3 so tn lien tiep la a,a+1 va a+2 (a thuoc N)
Ta xet 3 truong hop ;
Suy ra : a chia het cho 3
Th2 : a chia cho 3 du 1
Ta co : a=3q+1
a+2=3q+1+2
a+2=3q+3
a+2=3q+3.1
a+2=3.(q+1)
Suy ra :a+2 chia het cho 3
TH3 :a chia cho 3 du 2
Ta co : a=3q+2
a+1=3q+2+1
a+1=3q+3
a+1=3q+3.1
a+1=3.(q+1)
Suy ra : a+1 chia het cho 3
Vay trong 3 so tn lien tiep cho duy nhat 1 so chia het cho 3
Gọi 5 số tự nhiên liên tiếp đó là a, a+1, a+2, a+3, a+4.
Nếu \(a=5k\Rightarrow a⋮5\)
Nếu \(a=5k+1\Rightarrow a+4=5k+1+4=5k+5⋮5\)
\(\Rightarrow a+4⋮5\)
Nếu \(a=5k+2\Rightarrow a+3=5k+2+3=5k+5⋮5\)
\(\Rightarrow a+3⋮5\)
Nếu \(a=5k+3\Rightarrow a+2=5k+3+2=5k+5⋮5\)
\(\Rightarrow a+2⋮5\)
Nếu \(a=5k+4\Rightarrow a+1=5k+4+1=5k+5⋮5\)
\(\Rightarrow a+1⋮5\)
Vậy trong 5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5.