Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
Nếu 3^n +1 là bội của 10 thì 3^n +1 có tận cùng là 0
=> 3n có tận cùng là 9
Mà : 3^n+4 +1 = 3^n . 3^4 = .....9 . 81 + 1 = .....9 +1 = ......0
hay 3^n+4 có tận cùng là 0 => 3^n+4 là bội của 10
Vậy 3^n+4 là bội của 10.
a)
Ta có :
\(81^7-27^9-9^{13}\)
= \(3^{28}-3^{27}-3^{26}\)
= \(3^{23}\left(3^5-3^4-3^3\right)\)
= \(3^{23}\cdot135=3^{23}\cdot3\cdot45\) chia hết cho 45
b)
\(5+5^2+5^3+.....+5^{120}\)
số số hạng là : (120 - 1) : 1 + 1 = 120 (số)
=>\(5+5^2+5^3+.....+5^{120}=\left(5+5^2\right)+\left(5^3+5^4\right)+......+\left(5^{119}+5^{120}\right)\)= \(5\left(1+5\right)+5^3\left(1+5\right)+....+5^{119}\left(1+5\right)\)
= \(5\cdot6+5^3\cdot6+......+5^{119}\cdot6\)
= \(6\left(5+5^3+.....+5^{119}\right)\) chia hết cho 6
\(5+5^2+5^3+.....+5^{120}\)
= \(5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+......+5^{118}\left(1+5+5^2\right)\)
= \(5\cdot31+5^4\cdot31+......+5^{118}\cdot31\)
= \(31\left(5+5^4+.......+5^{118}\right)\) chia hết cho 31
1.
a) Ta có: \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5\)* Lại có : \(5⋮5\Rightarrow5.3^{26}⋮5\)
Và \(3^{26}⋮3^2=9\Rightarrow3^{26}.5⋮9\)
Mặt khác, do \(\left(5,9\right)=1\Rightarrow3^{26}.5⋮5.9=45\)
Vậy \(87^7-27^9-9^{13}⋮45\left(đpcm\right)\)
b) Đặt \(A=5+5^2+...+5^{120}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{119}+5^{120}\right)\)
\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{118}\left(5+5^2\right)\)
\(A=\left(5+5^2\right)\left(1+5^2+...+5^{118}\right)\)
\(A=30.\left(1+5^2+...+5^{118}\right)\)
Do \(30⋮6\Rightarrow30\left(1+5^2+...5^{118}\right)⋮6\left(1\right)\)
Tương tự, \(A=\left(5+5^2+5^3\right)+...+\left(5^{118}+5^{119}+5^{120}\right)\)
\(A=\left(5+5^2+5^3\right)+...+5^{117}\left(5+5^2+5^3\right)\)
\(A=\left(5+5^2+5^3\right)\left(1+...+5^{117}\right)\)
\(A=155\left(1+...+5^{117}\right)\)
Do \(155⋮31\Rightarrow155\left(1+...+5^{117}\right)⋮31\left(2\right)\)
Từ (1) và (2) => Đpcm.
tik mik nha !!!
a) \(B=3+3^3+3^5+...+3^{29}\)
\(\Rightarrow B=\left(3+3^3+3^5\right)+...+\left(3^{25}+3^{27}+3^{29}\right)\)
\(\Rightarrow B=\left(3+3^3+3^5\right)+...+3^{24}.\left(3+3^3+3^5\right)\)
\(\Rightarrow B=273+...+3^{24}.273\)
\(\Rightarrow B=273.\left(1+...+3^{24}\right)⋮273\)
Vậy B là bội của 273.
b) \(A=5+5^2+...+5^7+5^8\)
\(\Rightarrow A=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)
\(\Rightarrow A=\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)
\(\Rightarrow A=30+...+5^6.30\)
\(\Rightarrow A=30.\left(1+...+5^6\right)⋮30\)
Vậy A là bội của 30.
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30
\(A=5+5^2+5^3+...+5^{20}\)
\(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{19}+5^{20}\right)\)
\(\Rightarrow A=\left(5+25\right)+5^2.\left(5+5^2\right)+...+5^{18}.\left(5+5^2\right)\)
\(\Rightarrow A=30+5^2.30+...+5^{18}.30\)
\(\Rightarrow A=\left(1+5^2+...+5^{18}\right).30⋮30\)
\(\Rightarrow A⋮30\)
\(\Rightarrow A\) là bội của 3
Vậy...
S=(1-22)+(24-26)+....+(228-230)
S= (-3)+24(1-22)+...+228(1-22)
S= (-3)+24.(-3)+....+228.(-3)
S=(-3).(1+24+...+228) chia hết cho 3
Vậy S chia hết cho 3(dpcm)
Tick nha
ta có:
5 chia hết cho 5
52 chia hết cho 5
....
530 chia hết cho 5=> A chia hết cho 5(1)
mặt khác: A=5+52+53+...+530=5(1+5)+53(1+5)+...+529(1+5) chia hết cho 6(2)
do (5;6)=1 nên từ (1) và(2) => A chia hết cho 30