Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co 1/50 >1/100
1/51>1/100
1/52>1/100
.........
1/99>1/100
suy ra S=1/50 +1/51 +1/52 +.....+1/99>1/100*50=1/2 suy ra S>1/2
https://www.youtube.com/watch?v=fBjsHQKClNA&index=7&list=PLq0mRSDfY0BAMTu98fNHi-Lg_E9BWDYhV
ta có:1/50>1/100
1/51>1/100
...............
1/99>1/100
=>S>50*1/100
=>S>1/2(đpcm)
1/50>1/100
1/51>1/100
...................
1/99>1/100
=>S>50*1/100(do từ 1/50 đến 1/99 có 50 số hạng)
=>S>1/2
Ta có S = \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{74}+\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+...+\frac{1}{99}\)
\(=\left(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{74}\right)+\left(\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+...+\frac{1}{99}\right)\)
25 số hạng 25 số hạng
\(>\left(\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}\right)+\left(\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\right)\)
\(=25.\frac{1}{75}+25.\frac{1}{100}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)(ĐPCM)
Vậy S > 1/2
S = 1 / 50 + 1 / 51 +...+ 1 / 99 > 1 / 99 + 1 / 99 +...+ 1 / 99 = 50 / 99 > 50 / 100 = 1/2
\(S=\frac{1}{50}+\frac{1}{51}+.....+\frac{1}{99}>\frac{1}{99}+\frac{1}{99}+...+\frac{1}{99}=\frac{50}{99}>\frac{50}{100}=\frac{1}{2}\)
Easy mà =)))
Ta thấy: \(\frac{1}{50}>\frac{1}{100}\); \(\frac{1}{51}>\frac{1}{100}\);....;\(\frac{1}{99}>\frac{1}{100}\)
Mà từ 50 - 99 có 50 số nên ta có 50 phân số 100
Cộng theo từng vế,ta được:
\(S=\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}^{\left(đpcm\right)}\) (do có 50 phân số 1/100)
Mỗi phân số trong tổng đã cho đều lớn hơn \(\dfrac{1}{100}\), tất cả có 50 phân số. Vậy
S → \(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{50}{100}=\dfrac{1}{2}\).