Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Tổng 100 số hạng đầu tiên của dãy trên là:
\(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{159197}\)
\(=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{397.401}\)
\(=\frac{1}{4}\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{397.401}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{397}-\frac{1}{401}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{401}\right)\)
Vì \(\frac{1}{4}\left(1-\frac{1}{401}\right)< \frac{1}{4}\left(1-0\right)\)
\(\Rightarrow\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{159197}\)
Vậy tổng 100 số hạng đầu tiên của dãy đó nhỏ hơn \(\frac{1}{4}\) (Đpcm)
Tổng 100 số hạng đầu tiên của dãy trên là:
\(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{159197}\)
=\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{397.401}\)
=\(\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{397.401}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1`}{17}+...+\frac{1}{397}-\frac{1}{401}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{401}\right)<\frac{1}{4}.\left(1-0\right)=\frac{1}{4}.1=\frac{1}{4}\)
=>ĐPCM
c.\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\right)\)
\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=3\left(1-\frac{1}{101}\right)\)
\(=\frac{300}{101}\)
Thừa số thứ nhất của mẫu số của phân số thứ 100 là:
\(\left(100-1\right):1+1=100\)
=> Mẫu số của phân số thứ 100 là 100.101
Tổng 100 số hạng đầu tiên:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b) Ta xét mẫu số của các số hạng trong dãy :
6 = 1.6
66 = 6.11
176 = 11.16
336 = 16.21
........
Thừa số thứ nhất của mẫu của phân số thứ 100 của dãy là:
\(\left(100-1\right).5+1=496\)
=> Mẫu của phân số thứ 100 là 496.501.
Tính tổng 100 số hạng đầu:
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)
\(=1-\frac{1}{501}=\frac{500}{501}\)
*HÌNH NHƯ *
vì tổng mẫu số của dãy số luôn luôn bé hơn 4 mà \(\frac{1}{x}>\frac{1}{y}\left(y>x\right)\)nên tổng của 100 số hạng đầu của dãy số nhỏ hơn \(\frac{1}{4}\)