Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong hai số tự nhiên liên tiếp có 1 số chẵn và 1 số lẻ
=> Tích của chúng là chẵn
=> Tích của chúng chia hết cho 2
Vậy tích của 2 số tự nhiên liên tiếp luôn chia hết cho 2
a) Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
Gọi n là 1 số tự nhiên
Ta có n và (n+1) là 2 số tự nhiên liên tiếp
Nếu n là số chẵn thì n chia hết cho 2
Nếu n là số lẻ thì (n+1) chia hết cho 2
Vậy trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự
A)Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có:
2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
=>k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=>4k(k+1) chia hết cho 8(ĐPCM)
Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=> 4k(k+1) chia hết cho 8
a Gọi 2 số tự nhiên la k và k+2
ta có k.(k+2)=k2+2k
Nếu k:2 => k2:2=>2k:2
=>(k2+2k):2
Nếu k ko chia hết cho 2
k2là số lẻ =.2k la số lẻ
Mà số lẻ + số lẻ = số chẵn
=>(k2+2k):2
Gọi hai số chẵn liên tiếp là 2k; 2k + 2 (k thuộc N)
Ta có: 2k.(2k + 2) =4k2 + 4k = 4k.(k + 1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2 => k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 8
=> Tích hai số tự nhiên chẵn liên tiếp chia hết cho 8(đpcm)
a) Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8