Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Để 2007ab chia hết cho 2 và 5 thì : b=0.
Thay b=0 có 2007a0.
Để 2007a0 chia hết cho 9 thì :2+0+0+7+a+0 chia hết cho 9
Suy ra a=0 hoặc 9
Vậy a=0 hoặc 9
b=0.
Còn bài 2 mik ko biết làm.
2007ab chia hết cho 2 và 5 => b = 0 ta có số 2007a0
2007a0 chia hết cho 9 => tổng các chữ số chia hết cho 9 => a = 0 hoặc 9 ta có số 200700 hoặc 200790
=> a,b = 0,0 hoặc 9,0
Vậy a,b = 0,0 hoặc 9,0
Ta có: A=ab+bc+ca
=10a+b+10b+c+10c+a
=(10a+10b+10c)+(a+b+c)
=10(a+b+c)+(a+b+c)
=11(a+b+c)\(⋮\)11
=>ĐPCM
\(A=\overline{ab}+\overline{bc}+\overline{ca}\)
\(\Rightarrow A=10a+b+10b+c+10c+a\)
\(\Rightarrow A=\left(10a+a\right)+\left(10b+b\right)+\left(10c+c\right)\)
\(\Rightarrow A=11a+11b+11c\)
\(\Rightarrow A=11\left(a+b+c\right)\)
Vì \(11⋮11\)
\(\Rightarrow11\left(a+b+c\right)⋮11\)
\(\Rightarrow A⋮11\left(đpcm\right)\)
Lời giải:
Ta thấy với $a$ là số tự nhiên bất kỳ thì $a$ và $S(a)$ luôn có cùng số dư khi chia cho 9 nên:
$a-S(a)\vdots 9$
Tương tự với số tự nhiên $2a$ cũng vậy, $2a-S(2a)\vdots 9$
Suy ra:
$(2a-S(2a))-(a-S(a))\vdots 9$
Hay $a-(S(2a)-S(a))\vdots 9$
Hay $a\vdots 9$
Gọi 3 số tự nhiên cần tìm là : a ; a + 1 ; a + 2
KHi đó ta có: a + (a + 1) + (a + 2) = (a + a + a) + ( 1 + 2)
=3a + 3
= 3.(a + 1) chia hết cho 3
Gọi 3 số liên tiếp đó là : a ; a + 1 l a +2
Theo bài ra ta có :
a + ( a + 1 ) + ( a + 2 )
= ( a + a + a ) + ( 1 + 2 )
= 3a + 3
= 3 ( a + 1 ) chia hết cho 3
Trong bốn số \(a,b,c,d\)có ít nhất hai số có cùng số dư khi chia cho \(3\), giả sử đó là \(a,b\).
Khi đó \(a-b\)chia hết cho \(3\).
Nếu bốn số \(a,b,c,d\)có hai số lẻ, hai số chẵn, khi đó giả sử hai số lẻ là \(a,b\)hai số chẵn là \(c,d\)thì \(a-b\)chia hết cho \(2\)và \(c-d\)chia hết cho \(2\).
Nếu bốn số \(a,b,c,d\)có ít nhất ba số có cùng tính chẵn lẻ, giả sử đó là \(a,b,c\)khi đó \(a-b\)chia hết cho \(2\)và \(a-c\)chia hết cho \(2\).
Do đó ở mọi trường hợp, tích của tất cả các hiệu của hai số sẽ chia hết cho \(3\times2\times2=12\).
Ta có đpcm.
trong 4 số tự nhiên liên tiếp bao giờ cũng có số chia hết cho 4 mà số chia hết cho 4 nhân với số nào cũng chia hết cho 4 nên tích của 4 số tự nhiên liên tiếp cũng bao giờ chia hết cho 4
****Hong Hanh Tran
gọi ba số tự nhiên liên tiếp lần lượt là :a;a+1;a+2
ta có a*(a+1)*(a+2)chia hết cho 6(luôn đúng)
nên a*(a+1)*(a+2)luôn chia hết cho2
Không thể chứng minh được.Nếu 3 số tự nhiên đó đều là số lẻ thì tích của chúng là số lẻ