K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 11 2021

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-3;-2\right)\\\overrightarrow{AC}=\left(3;-\dfrac{9}{2}\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=-3.3+\left(-2\right).\left(-\dfrac{9}{2}\right)=0\)

\(\Rightarrow AB\perp AC\) hay tam giác ABC vuông tại A

\(AB=\sqrt{\left(-3\right)^2+\left(-2\right)^2}=\sqrt{13}\) ; \(AC=\sqrt{3^2+\left(-\dfrac{9}{2}\right)^2}=\dfrac{3\sqrt{13}}{2}\)

\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{39}{4}\)

\(\overrightarrow{AB}=\left(1;2\right)\)

\(\overrightarrow{AC}=\left(4;-2\right)\)

Vì \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\)

nên ΔABC vuông tại A

\(AB=\sqrt{1^2+2^2}=\sqrt{5}\)

\(AC=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\)

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{10}{2}=5\left(đvdt\right)\)

NV
5 tháng 1 2022

\(\left\{{}\begin{matrix}\overrightarrow{AC}=\left(4;-2\right)\\\overrightarrow{AB}=\left(1;2\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{AC}.\overrightarrow{AB}=4.1+\left(-2\right).2=0\)

\(\Rightarrow AC\perp AB\) hay tam giác vuông tại A

\(AB=\sqrt{1^2+2^2}=\sqrt{5}\) ; \(AC=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC=5\)

13 tháng 4 2017

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

a) D nằm trên trục Ox nên D có tọa độ D(x ; 0)

Khi đó :

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

Vậy chu vi tam giác OAB là P = AO + BO + AB = √10 + 2√5 + √10 = 2√5 + 2√10

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

16 tháng 12 2021

a: \(AB=\sqrt{\left(2-1\right)^2+\left(-1-1\right)^2}=\sqrt{5}\)

\(BC=\sqrt{\left(-2-2\right)^2+\left(-3+1\right)^2}=2\sqrt{2}\)

\(AC=\sqrt{\left(-2-1\right)^2+\left(-3-1\right)^2}=5\)

Đề sai rồi bạn

16 tháng 12 2020

a,Vuông tại A mới đúng

 \(AB=2\sqrt{10};AC=\sqrt{10};BC=5\sqrt{2}\)

\(\Rightarrow AB^2+AC^2=40+10=50=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A

b, \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC.sinA=\dfrac{1}{2}.2\sqrt{10}.\sqrt{10}.sin90^o=10\)

c, \(D\left(0;y_0\right)\)

\(A;C;D\) thẳng hàng \(\Leftrightarrow\overrightarrow{AC}=k.\overrightarrow{AD}\)

\(\Leftrightarrow\left\{{}\begin{matrix}3=k\\-1=k\left(y_0-4\right)\end{matrix}\right.\Rightarrow y_0=\dfrac{11}{3}\)

\(\Rightarrow D\left(0;\dfrac{11}{3}\right)\)

13 tháng 4 2016

a) D nằm trên trục Ox nên tọa độ của D là (x; 0).

Ta có :

DA2  = (1 – x)+ 32

DB2  = (4 – x)+ 22

DA = DB =>  DA2  = DB2

<=> (1 – x)+ 9  =  (4 – x)+ 4

<=>  6x = 10

=> x =     =>  D(; 0)

b)

OA2  = 1+ 3=10  => OA = √10

OB2  = 4+ 2=20  => OA = √20

AB= (4 – 1)2 + (2 – 3) = 10 => AB = √10

Chu vi tam giác OAB: √10 + √10 + √20 = (2 + √2)√10.

c) Ta có  = (1; 3)

 = (3; -1)

1.3 + 3.(-1) = 0 =>  . = 0 =>  ⊥ 

SOAB = || .||  => SOAB =5 (dvdt)

a: \(\overrightarrow{AB}=\left(-4;2\right)\)

\(\overrightarrow{BC}=\left(6;-3\right)\)

Vì \(\overrightarrow{BA}\cdot\overrightarrow{BC}=\overrightarrow{0}\) nên ΔABC vuông tại B

10 tháng 10 2017

a.

Gọi (D):y=ax+b chứa điểm A, C

(D'):y=a'x+b' chứa điểm B, C

* Ta có: A thuộc (D) khi 1= 2a+b (1)

C thuộc (D) khi 4= 3a+b (2)

Giải hệ (1), (2) ta suy ra a=3 , b=-5

* Ta có: B thuộc (D') khi 3=6a'+b' (3)

C thuộc (D') khi 4=3a'+b' (4)

Giải hệ (3), (4) ta suy ra a=-1/3 , b= 5

Ta thấy: a.a' = 3.(-1/3)=-1

Suy ra (D) vuông góc (D') tại điểm chung C của của 2 cạnh (5)

Vậy tam giác ABC vuông tại C

Theo công thức tính cạnh của đoạn thẳng trong hệ trục tọa độ ta có:

AC=\(\sqrt{\left(x_A-x_C\right)^2+\left(y_A-y_C\right)^2}=\sqrt{\left(2-3\right)^2+\left(1-4\right)^2}\)\(=\sqrt{10}\)

BC=\(\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}=\sqrt{\left(6-3\right)^2+\left(3-4\right)^2}\)\(=\sqrt{10}\)

Vậy AC=BC (6)

Từ (5) và (6) ta suy ra tam giác ABC vuông cân tại C

SABC=\(\dfrac{1}{2}\).AB.BC=\(\dfrac{1}{2}.\sqrt{10}.\sqrt{10}=\dfrac{1}{2}.10=\)5 (đvdt)

b. Làm tương tự câu a tìm độ dài các cạnh AB, BD, DA và tính diện tích bằng công thức SABD=\(\sqrt{p\left(p-AB\right)\left(p-BD\right)\left(p-DA\right)}\) với p là nửa chu vi tam giác ABD \(p=\dfrac{1}{2}\left(AB+BD+DA\right)\)

Tiếp tục dùng công thức SABD=\(=\dfrac{1}{2}.AB.BD.sinB\) các số liệu nêu trên đã có, chỉ cần thế vào là có góc B

Gọi I là tâm. Tìm độ dài bán kình bằng công thức SABD=\(\dfrac{AB.BD.DA}{4AI}\)

ta tìm được độ dài AI còn cách xác định tâm thì dựa vào giao điểm 2 đường thẳng (d) chứa đoạn AI và (d') chứa đoạn BI là xong