\(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}\) không phải là s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
24 tháng 8 2021

\(S=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(=2-\frac{1}{2012}< 2\)

mà \(S>1\)

do đó ta có đpcm. 

11 tháng 8 2019

\(S=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{1012^2}\)

\(S=1+\left(\frac{1}{4}+\frac{1}{9}+...+\frac{1}{1024144}\right)\)

\(S=1+\left(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+...+\frac{1}{2012\cdot2012}\right)\)

\(S=1+\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2012}\right)\)

\(S=1+\left(\frac{1}{2}-\frac{1}{2012}\right)\)

\(S=1+\frac{1005}{2012}\)

\(S=\frac{3017}{2012}\)

24 tháng 4 2016

Ta có:\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}>0\)

Vì:  \(\frac{1}{2^2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}>\frac{1}{2.3}\)

\(\frac{1}{4^2}>\frac{1}{3.4}\)

..........

\(\frac{1}{2012^2}>\frac{1}{2011.2012}\)

\(\Rightarrow A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)

\(\Rightarrow A<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\Rightarrow A<1-\frac{1}{2012}\)

\(\Rightarrow A<1\)

Vì A>0;A<1

=>A không phải số tự nhiên

=>ĐPCM

24 tháng 4 2016

Quy đồng A lên thì tử số chia hết cho 20112 còn mẫu số không chia hết cho 20112 vì có \(\frac{1}{2011^2}\) khi quy đồng thì tử không chia hết cho 20112

Vậy A không phải là số tự nhiên

12 tháng 4 2016

1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)

Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2

   1/9 + 1/10 + 1/11 <3x1/9 = 1/3

   1/12 + 1/13 +1/14 < 3x1/12 = 1/4

   1/15 + 1/16 < 3 x 1/15 = 1/5

Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)

Lập luận tương tự có:

A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16

Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)

Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.

7 tháng 4 2018

Câu 1 : 

Ta có : 

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(A=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{10000-1}{10000}\)

\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)

\(A=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{100^2}{100^2}-\frac{1}{100^2}\)

\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{100^2}\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

Do từ \(2\) đến \(100\) có \(100-2+1=99\) số \(1\) nên : 

\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)< 99\) \(\left(1\right)\)

Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) lại có : 

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< 1-\frac{1}{100}< 1\)

\(\Rightarrow\)\(A=99-B>99-1=98\)

\(\Rightarrow\)\(A>98\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(98< A< 99\)

Vậy A không phải là số nguyên 

Chúc bạn học tốt ~ 

7 tháng 4 2018

Bài 2 a) \(\Rightarrow M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{31}{99}\)

Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>1\left(1\right)\)

Ta lại có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{n.n}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\left(2\right)\)

Từ (1) và (2) : \(\Rightarrow1< \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\)

\(\Rightarrowđpcm\)

21 tháng 7 2021

undefinedk cho

  • mk nha cảm ơn

các bn nhé!!!!

7 tháng 3 2021

ko bít

7 tháng 3 2021

CHỊU THÔI KO BÍT :-D