K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2018

\(\frac{n+1}{n+2}\)tối giản \(n\ne-2\)

Gọi ƯCLN(n+1;n+2) là d 

n +1 chia hết cho d

n +2 chia hết cho d 

<=> (n+2)-(n+1 ) = 1 chia hết cho d 

=> 1 chia hết cho d nên d = 1 

=> ƯCLN(n+1;n+2) = 1

24 tháng 1 2018

Gọi ƯC(n+1,n+2)là d(d là số tự nhiên khác 0,n là số nguyên,n  khác -2)

=>n+1\(⋮\)d và n+2 chia hết cho d

=>(n+2)-(n+1)chia hết cho d

=>1 chia hết cho d mà d là STN khác 0

=>d =1

=>\(\frac{n+1}{n+2}\)là phân số tối giản(đpcm)

29 tháng 4 2018

a) Gọi ƯCLN ( n + 1 ; n + 2 ) = d

Khi đó \(\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d}\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy phân số \(\frac{n+1}{n+2}\)là p/s tối giản

b) Ta có :

\(P=\frac{n+3}{n-2}=\frac{\left(n-2\right)+5}{n-2}=1+\frac{5}{n-2}\)

Để P có giá trị là số nguyên

\(\Rightarrow\frac{5}{n-2}\text{phải có giá trị nguyên }\)

\(\Rightarrow5⋮n-2\)

\(\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Với n - 2 = 1 => n = 3

Với n - 2 = -1 => n = 1

Với n - 2 = 5 => n = 7

Với n - 2 = -5 => n = -3

Vậy : n \(\in\left\{3;1;7;-3\right\}\)

29 tháng 4 2018

a)Gọi UCLN của n+1 và n+2 là d

=>n+1 chia hết cho d, n+2 chia hết cho d

=>(n+2)-(n+1)=1 chia hết cho d

=>d=1

=>dpcm

b)Để n+3 phần n-2 là số nguyên thì n+3 chia hết cho n-2

Mà n-2 chia hết cho n-2

=>(n+3)-(n-2) chia hết cho n-2

=>5 chia hết cho n-2

=>n-2 thuộc ước của5

=>n-2 thuộc {1;-1;5;-5}

=>n thuộc {3;1;7;-3}

10 tháng 4 2015

Để phân số n+1/2n+1 là phân số tố giản thì ƯCLN(n+1,2n+1)=1

Giả sử ƯCLN(n+1,2n+1)=d

=>n+1 chia hết cho d

   2n+1 chia hết cho d

=>2.(n+1) chia hết cho d

   2n+1 chia hết cho d

=>2n+2 chia hết cho d

   2n+1 chia hết cho d

=>(2n+2)-(2n+1) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(n+1,2n+1)=1

=>Phân số n+1/2n+1 là phân số tối giản

Vậy phân số n+1/2n+1 là phân số tối giản

21 tháng 4 2016

Để 12n+1/30n+2 là phân số tối giản thì 12n+1 và 30n+2 phải có ƯCLN bằng 1

Gọi d là ƯCLN của 12n+1 và 30n+2 

12n+1 chia hết cho  d

30n+2 chia hết cho d

suy ra (30n+2 )-(12n+1) chia hết cho d

         = 30n+2-12n-1 chia hết cho d

         =(30n-12n) + (2-1)chia hết cho d

         =8n+1

8n chia hết cho d , 1 chia hết cho d

suy ra n= 8n thì 12n+1/30n+2  la  p/s tối giản

21 tháng 4 2016

Bài tương tựGọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*) 
=> 15n + 1 chia hết cho d 
30n + 1 chia hết cho d 
=> 2(15n + 1) chia hết cho d 
1(30n + 1) chia hết cho d 
=> 30n + 2 chia hết cho d 
30n + 1 chia hết cho d 
=>(30n + 2) - (30n + 1) chia hết cho d 
=> 1 chia hết cho d 
Do d thuộc N* 
=> d=1 
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1 
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau 
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh) 
Cho mình 5* pn nké.Hì.Thân.Chúc học giỏi

20 tháng 4 2015

Đặt (12n+1,30n+20) = d Ta có:(12n+1) chia hết cho d và (30n+2) chia hết cho d suy ra 5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d suy ra 60n+5 chia hết cho d và 60n+4 chia hết cho d suy ra 1 chia hết cho d suy ra d=1 (vì n thuộc N nên d thuộc n)Vậy 12n+1/30n+2 là phân số tối giản

26 tháng 2 2017

ta co:(12n+1) chia het cho d va (30n+2)chia het cho d

suy ra, 5(12n+1)chia het cho d va 2(30n+2) chia het cho d

suy ra,60n+5 chia het cho d va 60n+4 chia het chod

suy ra, 1 chia het cho d suy ra d=1(vi n thuoc N nen d thuocn)

Vay 12n+1/30n+2 la phan so toi gian

Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)

Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản

Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)

Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)

Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.