\(\dfrac{2n+1}{3n+2}\) là phân số tối giản

GIÚP M...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

Gọi \(d=ƯCLN\left(2n+1,3n+2\right)\) (\(d\in N\)*)

\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\)

\(d\in N\)*; \(1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+1;3n+2\right)=1\)

\(\Rightarrow\) Phân số \(\dfrac{2n+1}{3n+2}\) tối giản với mọi \(n\in N\)

28 tháng 3 2017

Gọi phân số tối giản cần tìm là \(\dfrac{a}{b}\)

Ta có:\(\dfrac{a}{b}\):\(\dfrac{5}{11}\)=\(\dfrac{11a}{5b}\)

\(\dfrac{a}{b}\):\(\dfrac{11}{21}\)\(\dfrac{21a}{11b}\)

\(\dfrac{a}{b}\):\(\dfrac{25}{28}\)=\(\dfrac{28a}{25b}\)

Vì cả 3 thương trên là số tự nhiên nên a chia hết cho 5,11,25\(\)\(\Rightarrow\)a\(\in\)BCNN(5;11;25)\(\Rightarrow\)a=275

Do đó b\(\in\)ƯCLN(11,21,28)=1

Vậy phân số tối giản cần tìm là \(\dfrac{275}{1}\)

28 tháng 3 2017

Em cảm ơn chị nhiều nhiều nha!

30 tháng 3 2017

????????????????

30 tháng 3 2017

Xin lỗi .... và \(\dfrac{2010.2011-1}{2010.2011}\) khocroikhocroikhocroi

22 tháng 3 2017

\(S=\dfrac{3}{5.7}+\dfrac{3}{7.9}+....+\dfrac{3}{59.61}\)

\(S=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+......+\dfrac{1}{59}-\dfrac{1}{61}\)

\(S=\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+\left(\dfrac{1}{7}-\dfrac{1}{9}\right)+...+\left(\dfrac{1}{59}-\dfrac{1}{61}\right)\)

\(S=\dfrac{1}{5}-\dfrac{1}{61}\)

\(S=\dfrac{56}{305}\)

Vậy S = \(\dfrac{56}{305}\)

22 tháng 3 2017

\(S=\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)

\(S=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)

\(S=\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=\dfrac{3}{2}.\dfrac{56}{305}=\dfrac{84}{305}\)

23 tháng 10 2017

Chứng Minh:C=\(3^0+3^2+3^4+...+3^{2002}⋮7\)

Nhân C với \(3^2\)ta có:

\(9S=3^2+3^4+3^6+...+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-1\)

\(\Rightarrow S=\dfrac{3^{2004}-1}{8}\)

Chứng minh:

Ta có:\(3^{2004}-1=\left(3^6\right)^{334-1}=\left(3^6-1\right).a=7.104.a\)

\(\)UCLN(7;8)=1

\(\Rightarrow S⋮7\)

23 tháng 10 2017

Sửa lại 1 chút!

Chứng minh: C= \(3^0+3^2+3^4+3^6+...+3^{2002}\) chia hết cho 7

6 tháng 3 2017

\(M=\dfrac{5^3}{1\cdot6}+\dfrac{5^3}{6\cdot11}+...+\dfrac{5^3}{26\cdot31}\)

\(=5^2\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{26\cdot31}\right)\)

\(=5^2\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)

\(=5^2\left(1-\dfrac{1}{31}\right)\)\(=25\cdot\dfrac{30}{31}=\dfrac{750}{31}\)

1 tháng 5 2017

Ta có:A-1=\(\dfrac{10^8+2}{10^8-1}-1=\dfrac{10^8+2-10^8+1}{10^8-1}=\dfrac{3}{10^8-1}\)

B-1=\(\dfrac{10^8}{10^8-3}-1=\dfrac{10^8-10^8+3}{10^8-3}=\dfrac{3}{10^8-3}\)

Do \(\dfrac{3}{10^8-1}>\dfrac{3}{10^8-3}\)

=>A-1>B-1

<=>A>B

Vậy...

2 tháng 5 2017

mik cũng đg cần mà bnXuân Tuấn Trịnh làm đúng ko z

17 tháng 4 2017

ta có ab3=3/4.3ab

=> 3.ab3=4.3ab

=> 3.(100a+10b+3)=4.(300+10a+b)

= 300a+30b+9=1200+40a+4b

=>(300a-40a)+(30b-4b)=1200-9

=260a+26b=1196

=26.(10a+b)=1196

=>10a+b=1196:26

=10a+b=46

=>10a+b=10.4+6

=>a=4:b=6

19 tháng 4 2017

Thanks, I understand the post

4 tháng 5 2017

để n thuộc z thì => 4 ⋮ 2n

=> 2n thuộc Ư(4) = {1;-1;2;-2;4;-4}

ta có bảng

2n 1 -1 2 -2 4 -4
n 1/2(loại) -1/2(loại) 1 -1 2 -2

vậy n= 1; -1 ;2 ;-2