Chứng tỏ rằng P ko phải là 1 số tự nhiên, biết:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow A=1-\frac{1}{100}\)

\(\Leftrightarrow A=\frac{99}{100}\)

        Vì \(\frac{99}{100}-2=-\frac{101}{100}\) là số âm

Nên \(\frac{99}{100}< 2\).Vậy ta được đpcm

25 tháng 5 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1< 2\)

25 tháng 5 2017

Bài làm

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}\)

\(A=\frac{49}{50}\)

Mà \(\frac{49}{50}\)lại nhỏ hơn 1 nên \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}< 1\left(ĐPCM\right)\)

P/S : Các bạn thấy mình làm đúng không ? Nếu sau thì ibox cho mình nhé 

25 tháng 5 2017

Đặt dãy số đó là A ta có :

A = 1/1.2 + 1/2.3 + 1/3.4 + ... +1/49.50

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/48 - 1/49 + 1/49 - 1/50

A = 1 - 1/50 Vì 1 - 1/50 < 1

⇒ A  < 1

26 tháng 6 2017

a)(x - 45) . 27 = 0 

x-45=0:27

x-45=0

x=0+45

x=45.

b)23 . (42 - x) = 23

42-x=23:23

42-x=1

x=42-1

x=41

26 tháng 6 2017

Câu 1:

a)(x-45)*27=0.

=>x-45=0:27.

=>x-45=0.

=>x=0+45.

=>x=45.

Vậy......

b)23*(42-x)=23.

=>42-x=23:23.

=>42-x=1.

=>x=42-1.

=>x=41.

Vậy....

Câu 2:Có vấn đề về đề bài.

25 tháng 5 2017

Số đó là :

 864 : \(\frac{1}{4}\)= 3456 

\(\frac{3}{4}\)số đó là :

 3456 x \(\frac{3}{4}\)= 2592 

              Đáp số : 2592

24 tháng 5 2017

\(\frac{3}{4}\)số đó là :

864 x \(\frac{3}{4}\)= 648

Đáp sô : 648

25 tháng 5 2017

\(\frac{1}{38.39}+\frac{1}{40.41}+\frac{1}{42.43}+...+\frac{1}{100.101}< \frac{1}{4}\)

Đặt A = \(\frac{1}{38.39}+\frac{1}{40.41}+\frac{1}{42.43}+....+\frac{1}{100.101}\)

A = \(\frac{1}{38}-\frac{1}{39}+\frac{1}{40}-\frac{1}{41}+.....+\frac{1}{100}-\frac{1}{101}\)

A = \(\frac{1}{38}-\frac{1}{101}\)

A = \(\frac{63}{3838}\)

Ta thấy \(\frac{63}{3838}< \frac{1}{4}\Rightarrow A< \frac{1}{4}\)

25 tháng 5 2017

Lập luận: 1/38.39 = 1/38 - 1/39

1/40.41 = 1/40 - 1/41

1/42. 43 = 1/42 - 1/43

....

1/100.101 = 1/100 - 1/101

Gọi phép tính trên là A. Ta có:

1/38 - 1/39 + 1/40 - 1/41 + 1/42 - 1/43 + ...+ 1/100 - 1/101

= 1/38 - 1/101 , vì 1/38 - 1/101 < 1/4 nên phép tính trên bé hơn 1/4. (nếu cần kĩ hơn thì làm ra kết quả rồi so sánh luôn)

6 tháng 4 2018

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

........

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

=> \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n-1\right)}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)

Đpcm 

14 tháng 3 2019

b)B=1/4(1/2^2+1/3^2+...+1/n^2)=1/4*A<1/4

đăng kí = gmail là s?

24 tháng 2 2019

ồ vậy hả!

23 tháng 7 2017

a)Ta có:
n+(n+1)+(n+2)=n+n+1+n+2

=3n+(1+2+3)

=3n+6.

=3(n+2)

Vì n+2EN.

=>3(n+2) chia hết cho 3.

b)Cách lm tương tự.

Ủng hộ nhá!
 

a) gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ( a thuộc N )

ta có : a + ( a + 1 ) + ( a + 2 ) = 3a + 3 = 3.( a + 1 ) chia hết cho 3 

vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3 

b) gọi tổng 4 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ; a + 3 ( a thuộc N )

ta có : a + ( a + 1 ) + ( a + 2 ) + ( a +3 ) = 4a + 6 không chia hết cho 4 (  không chia hết cho 4 )

vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4

30 tháng 7 2019

\(S=1+4+4^2+...+4^{49}\)

\(4S=4+4^2+...+4^{50}\)

\(4S-S=4^{50}-1\)

\(3S=4^{50}-1\)

\(S=\frac{4^{50}-1}{3}\)

Hc tốt

\(S=1+4+4^2+...+4^{49}\)

\(4S=\left(4+4^2+...+4^{50}\right)\)

\(4S-S=3S=\left(4+4^2+...+4^{50}\right)-\left(1+4+4^2+...+4^{49}\right)=4^{50}-1\)

\(\Rightarrow S=\frac{4^{50}-1}{3}\)