Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow A=1-\frac{1}{100}\)
\(\Leftrightarrow A=\frac{99}{100}\)
Vì \(\frac{99}{100}-2=-\frac{101}{100}\) là số âm
Nên \(\frac{99}{100}< 2\).Vậy ta được đpcm
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1< 2\)
Bài làm
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
Mà \(\frac{49}{50}\)lại nhỏ hơn 1 nên \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}< 1\left(ĐPCM\right)\)
P/S : Các bạn thấy mình làm đúng không ? Nếu sau thì ibox cho mình nhé
a)(x - 45) . 27 = 0
x-45=0:27
x-45=0
x=0+45
x=45.
b)23 . (42 - x) = 23
42-x=23:23
42-x=1
x=42-1
x=41
Câu 1:
a)(x-45)*27=0.
=>x-45=0:27.
=>x-45=0.
=>x=0+45.
=>x=45.
Vậy......
b)23*(42-x)=23.
=>42-x=23:23.
=>42-x=1.
=>x=42-1.
=>x=41.
Vậy....
Câu 2:Có vấn đề về đề bài.
Số đó là :
864 : \(\frac{1}{4}\)= 3456
\(\frac{3}{4}\)số đó là :
3456 x \(\frac{3}{4}\)= 2592
Đáp số : 2592
\(\frac{3}{4}\)số đó là :
864 x \(\frac{3}{4}\)= 648
Đáp sô : 648
\(\frac{1}{38.39}+\frac{1}{40.41}+\frac{1}{42.43}+...+\frac{1}{100.101}< \frac{1}{4}\)
Đặt A = \(\frac{1}{38.39}+\frac{1}{40.41}+\frac{1}{42.43}+....+\frac{1}{100.101}\)
A = \(\frac{1}{38}-\frac{1}{39}+\frac{1}{40}-\frac{1}{41}+.....+\frac{1}{100}-\frac{1}{101}\)
A = \(\frac{1}{38}-\frac{1}{101}\)
A = \(\frac{63}{3838}\)
Ta thấy \(\frac{63}{3838}< \frac{1}{4}\Rightarrow A< \frac{1}{4}\)
Lập luận: 1/38.39 = 1/38 - 1/39
1/40.41 = 1/40 - 1/41
1/42. 43 = 1/42 - 1/43
....
1/100.101 = 1/100 - 1/101
Gọi phép tính trên là A. Ta có:
1/38 - 1/39 + 1/40 - 1/41 + 1/42 - 1/43 + ...+ 1/100 - 1/101
= 1/38 - 1/101 , vì 1/38 - 1/101 < 1/4 nên phép tính trên bé hơn 1/4. (nếu cần kĩ hơn thì làm ra kết quả rồi so sánh luôn)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
........
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
=> \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n-1\right)}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)
Đpcm
a)Ta có:
n+(n+1)+(n+2)=n+n+1+n+2
=3n+(1+2+3)
=3n+6.
=3(n+2)
Vì n+2EN.
=>3(n+2) chia hết cho 3.
b)Cách lm tương tự.
Ủng hộ nhá!
a) gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ( a thuộc N )
ta có : a + ( a + 1 ) + ( a + 2 ) = 3a + 3 = 3.( a + 1 ) chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b) gọi tổng 4 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ; a + 3 ( a thuộc N )
ta có : a + ( a + 1 ) + ( a + 2 ) + ( a +3 ) = 4a + 6 không chia hết cho 4 ( không chia hết cho 4 )
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
\(S=1+4+4^2+...+4^{49}\)
\(4S=4+4^2+...+4^{50}\)
\(4S-S=4^{50}-1\)
\(3S=4^{50}-1\)
\(S=\frac{4^{50}-1}{3}\)
Hc tốt
\(S=1+4+4^2+...+4^{49}\)
\(4S=\left(4+4^2+...+4^{50}\right)\)
\(4S-S=3S=\left(4+4^2+...+4^{50}\right)-\left(1+4+4^2+...+4^{49}\right)=4^{50}-1\)
\(\Rightarrow S=\frac{4^{50}-1}{3}\)