Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = n(n + 1)(2n + 1)
Ta thấy n(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2
=> A chia hết cho 2 (1)
Ta xét 3 trường hợp:
+ n chia 3 dư 1 => 2n + 1 chia hết cho 3 => A chia hết cho 3
+ n chia 3 dư 2 => n + 1 chia hết cho 3 => A chia hết cho 3
+ n chia hết cho 3 => A chia hết cho 3
Do đó A luôn chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 6 (Vì 2.3 = 6 và (2; 3) = 1)
Vậy...
Ta co :
n(n+1)(2n+1)
= n(n+1)(n+2+n-1)
=n(n+1)(n+2)+(n-1)(n+1)n
3 số liên tiếp thì chia hết cho 2 ; chia hết cho 3
Vay tổng trên chia hết cho 6
**** nhe đặng kiều oanh
Ta co :
n(n+1)(2n+1)
= n(n+1)(n+2+n-1)
=n(n+1)(n+2)+(n-1)(n+1)n
3 số liên tiếp thì chia hết cho 2 ; chia hết cho 3
Vay tổng trên chia hết cho 6
\(2n+3=2\left(n+1\right)+1\)chia hết cho \(n+1\)
\(\Leftrightarrow1⋮\left(n+1\right)\)
mà \(n\)là số tự nhiên nên \(n+1\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Leftrightarrow n\in\left\{-2,0\right\}\)
mà \(n\)là số tự nhiên nên \(n=0\).
Ta có: n(n+1)(2n+1)=n(n+1)[(n+2)+(n-1)]
=n(n+1)(n+2)+n(n+1)(n-1)
Nhận thấy: n(n+1)(n+2) và n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp
=>Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(2n+1) chia hết cho 2 và 3.
=>ĐPCM(Đá phải con ma)
=>Đùa chút thôi