Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SU DUNG NGUYEN LI DIRICHLET DE TIM CHIA HET CHO 3 VI TATCA LA SNT >3
NEN 3 SO KO CHIA HET CHO 3 NÊN CO DANG 3K+1 VÀ 3K+2
3 SỐ LÀ SNT>3 NEN 3 SO LA SÔ LE NÊN N LA CHAN NEN N:2
Lời giải:
a.
$2n^2+n-6=n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1$ là ước của $6$
Mà $2n+1$ lẻ nên $2n+1\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$
b.
Vì $p$ là số nguyên tố lớn hơn 3 nên $p=3k+1$ hoặc $p=3k+2$
Với $p=3k+1$ thì $p^2-1=(p-1)(p+1)=3k(3k+2)\vdots 3$
Với $p=3k+2$ thì $p^2-1=(p-1)(p+1)=(3k+1)(3k+3)=3(3k+1)(k+1)\vdots 3$
Suy ra $p^2-1$ luôn chia hết cho $3$ (*)
Mặt khác:
$p$ lẻ nên $p=2k+1$. Khi đó: $p^2-1=(p-1)(p+1)=2k(2k+2)$
$=4k(k+1)\vdots 8$ (**) do $k(k+1)\vdots 2$ (tích 2 số nguyên liên tiếp)
Từ (*) ; (**) suy ra $p^2-1\vdots (3.8)$ hay $p^2-1\vdots 24$.
Chỳ ý rằng , các số nguyên tố (trừ số 2) đều là các số lẽ
- Nếu n lẽ thì n + a là số chẵn là một hợp số trỏi với giả thiết n + a là số nguyên tố. vậy n là số chẳn
- Ta dặt n = 2k, k ∈ N *
+ Nếu k chia hết cho 3 thì n chia hết cho 6
+ Nếu k = 3p + 1 , p ∈ N * thì 3 số theo thứ tự bằng a, a + 6p + 2,
a + 12p + 4
+ Do a là số lẽ nên nếu a chia cho 3 dư 1 thì a + 6p + 2 chia hết cho 3,
Nếu a chia 3 dư 2 thì a + 12p + 4 chia hết cho 3
+ Nếu k = 3p + 2 p ∈ N * thì 3 số theo thứ tự bằng
a, a + 6p +4, a + 12p +8
với a chia cho 3 dư 1 thì a + 12p +8 chia hết cho 3
với a chia cho 3 dư 2 thì a + 6p +4 chia hếtt cho 3
Vậy để 3 số a, a + n, a + 2n đều là số nguyên tố thì n phải chia hếtt cho 6.