K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2019
Chứng minh rằng : (n-1 ) (n+2) + 12 không chia hết cho 9 Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 . Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 . Ta có : A = (n-1 ) (n+2) + 12 A = n x n + n x 2 - n - 2 + 12 A = n x n + n + 10 A = n x (n + 1) + 10 A - 10 = n x (n + 1) Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 . Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là : A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 . Hay (n-1 ) (n+2) + 12 không chia hết cho 9
28 tháng 4 2015

(n+1)(n+2)+12

=(n+1)*n+(n+1)*2+12

=n2+1n+2n+2+12

=n2+(1+2)n+(2+12)

=n2+3n+14

=n*n+3n+14

=n(n+3)+14

Vì 14 không chia hết cho 9 nên n(n+3) không chia hết cho 9

nên n(n+3)+14 không chia hết cho 9

nên (n+1)(n+2)+12 không chia hết cho 9 với mọi n

Vậy với mọi n thuộc Z thì (n+1)(n+2)+12 không chia hết cho 9

cái này mình làm bậy, ko biết có đúng k

chúc bạn học tốt!^_^

28 tháng 4 2015

nếu n = 2 => (n+1)(n+2) + 12 = 24 không chia hết cho 9

=> (n+1)(n+2) + 12 không chia hết cho 9 với mọi n

NV
25 tháng 4 2019

\(N=\left(n-1\right)\left(n+2\right)+12=n^2+n+10\)

- Với \(n=3k\Rightarrow N=9k^2+3k+9+1⋮̸3\Rightarrow N⋮̸9\)

- Với \(n=3k+1\Rightarrow N=9\left(k^2+k+1\right)+3⋮̸9\)

- Với \(n=3k+2\Rightarrow N=3\left(3k^2+5k+5\right)+1⋮̸3\Rightarrow N⋮̸9\)

Vậy \(N⋮̸9\) \(\forall n\in Z\)

NV
25 tháng 4 2019

Nhân phân phối phá vào thôi có gì đâu bạn

\(\left(n-1\right)\left(n+2\right)+12=n\left(n+2\right)-1\left(n+2\right)+12\)

\(=n^2+2n-n-2+12=n^2+n+10\)

1 tháng 2 2017

( n - 1 ) ( n + 2 ) + 12 ( khong chia het cho 9 ) - Online Math

Đó mk kiếm đc đó

Tick cho mình

1 tháng 2 2017

Mình cũng có 1 câu hỏi giống như thế này nhưng không biết giải

You and I has the same a life

8 tháng 2 2016

vì n là số nguyên nên n có 3 dạng:3k; 3k+1;3k+2

*Với n=3k=>n chia hết cho 3=>n-1 và n+2 không chia hết cho 3

=>(n-1)(n+2) không chia hết cho 3. Mà 12 chia hết cho 3 =>(n-1)(n+2)+12 không chia hết cho 3=> tổng đó không chia hết cho 9

*Với n=3k+1=>n-1=3k;n+2=3k+3 chia hết cho 3=>(n-1)(n+2) chia hết cho9. Mà 12 không chia hết cho9=> tổng đó không chia hết cho9.

*Với n=3k+2=>n-1=3k+1; n+2=3k+4 đều không chia hết cho3=>(n-1)(n+2) không chia hết cho3. Mà 12 chia hết cho3 =>tổng đó không chia hết cho3 => tổng đó không chia hết cho9

Vậy ta có đpcm

8 tháng 2 2016

(n+1)(n+2)=12

=(n+1)*n+(n+1)*2+12

=n2 +1n+2n+2+12

=n2 +(1+2)n+(2+12)

=n2 +3n+14

=n*n+3n+14

=n(n+3)+14

Vì 14 không chia hết cho 9 nên n(n+3) không chia hết cho 9

nên n(n+3)+14 không chia hết cho 9

nên (n-1)(n+2)+12 không chia hết cho 9 với mọi n

vậy mọi n thuộc z thì (n-1)(n+2)+12 không chia hết cho 9

22 tháng 1 2018

a) Ta xét các trường hợp:

+)  Với n = 3k  \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)

Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.

+)  Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)

Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)

+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)

Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.

b) Tương tự bài trên.