Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của n+1 và 2n+1
Ta có: n+1 chia hết cho d
2n+1 chia hết cho d
=> 2(n+1) chi hết cho d => 2n+2 chia hết cho d
2n+1 chia hết cho d
Vì 2n+2 - (2n+1) chia hết cho d
Nên 1 chia hết cho d với mọi số tự nhiên n
=> d =1
Vậy phân số \(\frac{n+1}{2n+1}\)là phân số tối giản với mọi số tự nhiên n
Cho ước chung lớn nhất của n+1 và 2n+3 là d
Ta có : n+1 chia hết cho d -> 2(n+1) cũng chia hết cho d
-> 2n+3 - 2(n+1) chia hết cho d (nếu 2 số cùng chia hết cho 1 số a thì tổng hoặc hiệu của 2 số đó cũng chia hết cho a)
-> 2n+3 - (2n+2) chia hết cho d
-> 1 chia hết cho d
-> n+1 và 2n +3 là 2 số nguyên tố cùng nhau
\(\frac{n+1}{2n+3}\) đã tối giản với mọi số tự nhiên n
Gọi d là ƯCLN của tử và mẫu .
=>12n +1 chia hết cho d 60n+5 chia hết cho d
=>
30n +2chia hết cho d 60n +4 chia hết cho d
=> (60n+5) -(60n+4) chia hết cho d
=>1 chia hết cho d
=> d=1 => điều phải chứng minh (đpcm)
Ý 1 tớ chịu còn 2 ý sau để tớ giúp
Gỉa sử : 12n+1 chia hết cho d ( d là ƯCLN)
30n+2 chia hết cho d
=> 5(12n+1) chia hết cho d
2(30n+2) chia hết cho d
=> 5(12n+1) - 2(30n+2) chia hết cho d
=>( 60n + 5) - (60n + 4)
=> 60n+5 - 60n-4 chia hết cho d
=> 1 chia hết cho d
=> d=1
=> 12n+1/30n+2 tối giản ( đpcm )
Gỉa sử 8n+193 chia hết cho d d nguyên tố
4n+3 chia hết cho d
=> (8n+193) - 2 ( 4n+3) chia hết cho d
=> (8n+193) - (8n+6) chia hết cho d
=> 8n+193 - 8n -6 chia hết cho d
=> 187 chia hết cho d
Do d nto =>d = 11;17
=> 8n+193 chia hết cho 11
4n+3 chia hết cho 11
=>4(8n+193) chia hết cho 11
3( 4n+3 ) chia hết cho 11
=> 32n+772 chia hết cho 11
12n+9 chia hết cho 11
=> 33n-n+11.70+2 chia hết cho 11
11n+n+11-2 chia hết cho 11
=>-n+2 chia hết cho 11
n-2 chia hết cho 11
=> n-2 chia hết cho 11
=> n-2 = 11k(k thuộc N*)
=> n= 11k+2 (1)
d=17 ta có
8n+193 chia hết cho 17
4n+3 chia hết cho 17
=>2(8n+193) chia hết cho 17
4(4n+3) chia hết cho 17
=. 16n+386 chia hết cho 17
16n+12 chia hết cho 17
=> 17n-n+17.22+12 chia hết cho 17
17n-n+12 chia hết cho 17
=> -n+12 chia hết cho 17
=> n-12 chia hết cho 17
=> n-12=17q (q thuộc N*)
=>n= 17q+12 (2)
Từ (1) và (2) => B rút gọn được khi n=11k+2 ; 17q+12
Do 150<n<170
=> n thuộc 156;165;167
Vậy n thuộc 156;165;167
để A là PS thì n-3 khác 0
=>n # 3
Để A có giá trị nguyên thì n+1 phải chia hết cho n-3
=>n-3 là Ư(n+1)
Ta có:n+1=(n-3)+4
=>n-3 là Ư(4)
TA có bảng....
Rồi đến đây bạn tự tính và kết luận là xong nhé
Gọi ƯCLN(3n + 7 , 2n + 3) = d
=> \(\hept{\begin{cases}3n+7⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2.\left(3n+7\right)⋮d\\3.\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+14⋮d\\6n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+14\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow5⋮d\)
\(\Rightarrow d\inƯ\left(5\right)\)
\(\Rightarrow d\in\left\{1;5\right\}\)
Nếu d = 5
Mà \(2n+3\)tận cùng là số lẻ (1)
=> 2n + 3 \(⋮\)5 (2)
Từ (1) và (2) => 2n + 3 = ....5 \(⋮\)5 (3)
mà 3n + 7 tận cùng là chẵn hoặc lẻ
=> 3n + 7 = ...5 \(⋮\)5 (4)
Từ (3) và (4)
=> \(\frac{3n+7}{2n+3}\)là phân số chưa tối giản
VD : nếu n = 6
=> \(\frac{3n+7}{2n+3}=\frac{3.6+7}{2.6+3}=\frac{25}{15}=\frac{5}{3}\)
Điều này không thể chứng minh
Bài giải
Gọi d = ƯCLN ( 3n + 7 , 2n + 3 )
\(\Rightarrow\text{ }3n+7\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }2\left(3n+7\right)\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }6n+14\text{ }⋮\text{ }d\)
\(2n +3\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }3\left(2n+3\right)\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }6n+9\text{ }⋮\text{ }d\)
\(\Rightarrow\text{ }6n +14-\left(6n+9\right)\text{ }⋮\text{ }d\)
\(6n+14-6n-9\text{ }⋮\text{ }d\)
\(\Rightarrow\text{ }5\text{ }⋮\text{ }d\)
\(\Rightarrow\text{ }d\in\left\{1\text{ ; }5\right\}\)
Ta xét hai trường hợp :
TH1 : n lẻ => 3n + 7 chẵn
TH2 : n chẵn => 2n + 3 lẻ
=> Nếu \(d=5\) thì :
3n + 7 = 0 => n = \(-\frac{7}{3}\notin N\)
2n + 3 = 5 => n = \(1\)
Vậy \(d=1\)
\(\Rightarrow\text{ ĐPCM}\)
Gọi UCLN(n+1;2n+3) = d, ta có:
n+1 chia hết cho d
=> 2n+2 chia hết cho d
2n + 3 chia hết cho d
=> (2n+3)-(2n+2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
(2n-2n)+(3-2) chia hết cho d
1 chia hết cho d
=> d thuốc Ư(1) ={1;-1}
=> \(\frac{n+1}{2n+3}\) là phân số tối giản
Chúc bạn học tốt!
Vì ps n+1 / 2n + 3 là ps tối giản nên n +1 và 2n +3 là 2 số nguyên tố cùng nhau
Gọi d là ƯC của n +1 và 2n + 3
Ta có : (2n +3 ) - ( 2(n+1) ) chia hết cho d
Hay : (2n +3 ) - ( 2n +2 ) chia hết cho d
=> 2n +3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d => d ϵ Ư ( 1 ) = + 1
Vậy n + 1 / 2n + 3 là phân số tối giản
Gọi ƯCLN (n;n+1) = d ( d \(\in\)N*)
\(\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\Rightarrow n+1-n⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy ta có đpcm
Gọi d là (2n+5;3n+7)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
=> [6n+15 - ( 6n+14 )] \(⋮\) d
=> 1 \(⋮\)d
=> phân số trên tối giản
Gọi d là ƯCLN(4n+7;2n+3)
Ta có:
2n+3 chia hết cho d =>2(2n+3) chia hết cho d
4n+7 chia hết cho d
=>(4n+7)-(4n+6) chia hết cho d
=>1 chia hết cho d
=> d thuộc Ư(1)={1;-1}
=>đpcm
chứng tỏ rằng mọi phân số có dạng \(\frac{n}{n+1}\)(vơi n thuộc N, n khác 0) đều là phân số tối giản
Gọi ƯCLN của n và n + 1 là d (d \(\in\)N và d \(\ge\)1).
Khi đó n \(⋮\)d và n + 1\(⋮\)d. Suy ra n + 1 - n \(⋮\)d => 1 \(⋮\)d
Vậy d = 1
Như vậy phân số \(\frac{n}{n+1}\)là phân số tôi giản.
thj` các phân số có tử và mẫu liền nhau thj` đều là p/s tối giản, mk trả lời lih tih ko bít đúng ko nữa.!!!!
Vì ƯCLN(n;n+1)=1 hay n và n+1 nguyên tố cùng nhau nên phân số \(\frac{n}{n+1}\)là phân số tối giản.
Cái này là định nghĩa việc gì phải chứng minh