K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

+ Vì 14, 12, 10 đều là chẵn nên 14n, 12n, 10n đều là chẵn. \(\Rightarrow\) 14n + 12n + 10n là chẵn

+ Vì 11, 9, 7 đều là lẻ nên 11n, 9n, 7n đều là lẻ. \(\Rightarrow\) 11n + 9n + 7n là lẻ

Chẵn - Lẻ = Lẻ. Vậy, (14n + 12n + 10n) - (11n + 9n + 7n) là lẻ. \(\Rightarrow\) (14n + 12n + 10n) - (11n + 9n + 7n) \(⋮̸\) 2

\(\Rightarrow\) ĐPCM

12 tháng 10 2017

thanks

4 tháng 1 2022

1 nhân 0 bằng 0 vậy là do 0 nhân với số nào cx bằng 0 hay do 1 nhân với số nào cx bằng chính số đo

15 tháng 1 2018

a, Gọi d là ƯC ( 7n + 10 ; 5n + 7 ) 

Theo bài ra ta có : 7n + 10 chia hết cho d

=> 5 ( 7n + 10 ) chia hết cho d

=> 35n + 50 chia hết cho d ( 1 )

5n + 7 chia hết cho d 

=>7 ( 5n + 7 ) chia hết cho d

=> 35n + 49 chia hết cho d ( 2 )

Từ ( 1 ) và ( 2 ) => ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d 

=> 1 chia hết cho d

Vậy .....

b ) 14n + 3 và 21n + 4

Gọi d là ƯC ( 14n + 3 ; 21n + 4 )

Ta có : 14n + 3 chia hết cho d

=> 3 ( 14n + 3 ) chia hết cho d

=> 42n + 9 chia hết cho d ( 1 )

21n + 4 chia hết cho d

=> 2 ( 21n + 4 ) chia hết cho d

=> 42n + 8 chia hết cho d ( 2 )

Từ ( 1 ) và ( 2 ) => ( 42n + 9 ) - ( 42 n + 8 ) chia hết cho d

=> 1 chia hết cho d

Vậy ........

12 tháng 8 2017

\(a,\frac{7n+3}{n}\)

\(\Rightarrow3⋮n\)Vì \(7n⋮n\)

\(\Rightarrow n\inƯ\left(3\right)=\left(1;3\right)\)

\(b,\frac{12n-1}{4n+2}\)

\(=\frac{12n+6-7}{4n+2}\)

\(=\frac{3\left(4n+2\right)}{4n+2}-\frac{7}{4n+2}\)

Để \(12n-1⋮4n+2\)

\(\Rightarrow7⋮4n+2\)

\(\Rightarrow4n+2\inƯ\left(7\right)=\left(1;7;-1;-7\right)\)

a: Gọi d là ước chung lớn nhất của 3n+4 và n+1

=>\(\left\{{}\begin{matrix}3n+4⋮d\\n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3n+4⋮d\\3n+3⋮d\end{matrix}\right.\)

=>\(3n+4-3n-3⋮d\)

=>\(1⋮d\)

=>d=1

=>n+1 và 3n+4 là hai số nguyên tố cùng nhau

b: Gọi d là ước chung lớn nhất của 7n+10 và 5n+7

=>\(\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}35n+50⋮d\\35n+49⋮d\end{matrix}\right.\)

=>\(35n+50-35n-49⋮d\)

=>\(1⋮d\)

=>d=1

=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

c: Gọi d là ước chung lớn nhất của 14n+3 và 21n+4

=>\(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)

=>\(42n+9-42n-8⋮d\)

=>\(1⋮d\)

=>d=1

=>14n+3 và 21n+4 là hai số nguyên tố cùng nhau

9 tháng 11 2023

thanks

 

28 tháng 12 2016

Giả sử \(n^2+11n+39⋮49\)

\(\Rightarrow n^2+11n+39⋮7\)

\(\Rightarrow n^2+11n+39-7\left(n+5\right)⋮7\)

\(\Rightarrow n^2+4n+4⋮7\)

\(\Rightarrow\left(n+2\right)^2⋮7\)

\(\Rightarrow n+2⋮7\)

\(\Rightarrow\) n có dạng \(7k-2\)

Thay vào biểu thức \(n^2+11n+39=\left(7k-2\right)^2+11\left(7k-2\right)+39\)

\(=49k^2-28k+4+77k-22+39\)

\(=49k+49k+21\)không chia hết cho 49.

Vậy ....

12 tháng 8 2017

a) Ta có :

\(7n+3⋮n\)

\(n⋮n\)

\(\Leftrightarrow\left\{{}\begin{matrix}7n+3⋮n\\7n⋮n\end{matrix}\right.\)

\(\Leftrightarrow3⋮n\)

\(n\in N;3⋮n\Leftrightarrow n\inƯ\left(3\right)=\left\{1;3\right\}\)

Vậy ....................

b) Ta có :

\(12n-1⋮4n+2\)

\(4n+2⋮4n+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}12n-1⋮4n+2\\12n+6⋮4n+2\end{matrix}\right.\)

\(\Leftrightarrow7⋮4n+2\)

\(n\in N\Leftrightarrow4n+2\in N;4n+2\inƯ\left(7\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4n+2=1\\4n+2=7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}n=\dfrac{-1}{4}\\n=\dfrac{5}{4}\end{matrix}\right.\) \(\left(loại\right)\)

Vậy ....

12 tháng 8 2017

mình chỉ bt câu a mình học trên lớp thôi bn thông cảm ! :(

a.

Ta có: 7n+3 chia hết cho n => 7n chia hết cho n => 3 chia hết cho n

mà n thuộcN => n thuộc Ư(3)

vậy n thuộc Ư [1;3}

TICK zùm mình nhé!

30 tháng 4 2016

Gọi d là (30n+2 ; 12n+1) (1)

=> 30n+2 chia hết cho d

=> 2(30n+2) chia hết cho d

hay 60n+4 chia hết cho d

Tương tự ta chứng minh được 5(12n+1) chia hết cho d

=> 60n+5 chia hết cho d do đó (60n+5) - (60n+4) chia hết cho d

hay 1 chia hết cho d =>

d=1 hoặc -1 (2) Từ (1) và (2)

=> (30n+2 ; 12n+1) = 1 hoặc -1 do đó phân số 12n+1 trên 30n+2 là phân số tối giản (Đ.P.C.M) 

b. Gọi d là ƯCLN của 14n+17 và 21n+25

Ta có: * 14n+17 chia hết cho d

=> 3 (14n+17) chia hết cho d

> 42n+51 chia hết cho d *

21 +25 chia hết cho d =>

2 (21n+25) chia hết cho d

=> 42n+50 chia hết cho d

Ta lại có: 42n+51 - (42n+50) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> B là phân số tối giản 

30 tháng 4 2016

Gọi d là (30n+2 ; 12n+1) (1)

=> 30n+2 chia hết cho d

=> 2(30n+2) chia hết cho d

hay 60n+4 chia hết cho d

Tương tự ta chứng minh được 5(12n+1) chia hết cho d

=> 60n+5 chia hết cho d do đó (60n+5) - (60n+4) chia hết cho d

hay 1 chia hết cho d =>

d=1 hoặc -1 (2) Từ (1) và (2)

=> (30n+2 ; 12n+1) = 1 hoặc -1 do đó phân số 12n+1 trên 30n+2 là phân số tối giản (Đ.P.C.M) 

b. Gọi d là ƯCLN của 14n+17 và 21n+25

Ta có: * 14n+17 chia hết cho d

=> 3 (14n+17) chia hết cho d

> 42n+51 chia hết cho d *

21 +25 chia hết cho d =>

2 (21n+25) chia hết cho d

=> 42n+50 chia hết cho d

Ta lại có: 42n+51 - (42n+50) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> B là phân số tối giản