K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?

8 tháng 8 2016

trool tao à

23 tháng 10 2016

Linh ơi bài này ở đâu thế

23 tháng 10 2016

bài này ở toán buổi chiều

25 tháng 7 2016

\(1.a,10^n-1=100..0-1\)(n chữ số 0)=999..99(n chữ số 9)chia hết cho (vì có tổng bằng 9+9+..+9 chia hết cho 9)

\(b,10^n+8=100..0+8\)(n chữ số 0) = 1000...08.

Tổng các chữ số là: 1+0+0+...+8=9 chia hết cho 9.

2.

25 tháng 7 2016

Tạm thời mik chỉ bik lm bài 1 nên pn thông cảm nhé

1 a) pn thao khảo tại nhé do ở đây có bài giống nên mik gửi link luôn nhé!  http://olm.vn/hoi-dap/question/651590.html

b) Ta có: 10n+8= 1000000000000.......000+8

                               n chữ số 0

=> 10n+8= 10000000000........008

                      n chữ số 8

Ta có tổng các chữ số của 10n+8 bằng:  1+00000000.....000 ( Với n chữ số 0)+8= 1+0+8=9

Vì 9 chia hết cho 9  => 10n+8 chia hết cho 9

14 tháng 11 2017

a) Ta co:

                  2n + 111....1     ( n CS 1 )

         =  ( 3n - n ) + 111....1 ( n CS 1 )

         =  3n + ( 111....1 - n ) ( n CS 1 )

Tổng các chữ so cua so 111... 1 ( n CS 1 ) la :

          1 + 1 + 1 + .........+ 1 = n  ( n so 1 )

suy ra, Số 111...1 và n có cùng số dư khi chia cho 3 ( n CS 1 )

suy ra : ( 111...1 - n )  ⋮3        ( n CS 1 )

Ma (3n) ⋮ 3 với mọi n ∈N

suy ra: [ 3n + ( 111...1 - n ) ] ⋮ 3     ( n CS 1 )

Vay voi moi số tự nhiên n # 0 thì ta co:

​               2n + 111...1  chia hết cho 3   ( n CS 1 )

 

11 tháng 9 2019

Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath