K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2015

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{2010.2013}\right)\)

\(=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{2010}-\frac{1}{2013}\right)\)

\(=\frac{1}{3}\left(1-\frac{1}{2013}\right)=\frac{1}{3}.\frac{2012}{2013}<\frac{1}{3}.1=\frac{1}{3}\)

28 tháng 5 2019

#)Giải :

\(\frac{91}{1.4}+\frac{91}{4.7}+\frac{91}{7.11}+...+\frac{91}{88.91}\)

\(=\frac{91}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+...+\frac{3}{88.91}\right)\)

\(=\frac{91}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{88}-\frac{1}{91}\right)\)

\(=\frac{91}{3}\left(1-\frac{1}{91}\right)\)

\(=\frac{91}{3}.\frac{90}{91}=30\left(đpcm\right)\)

         #~Will~be~Pens~#

28 tháng 5 2019

\(\frac{91}{1\cdot4}+\frac{91}{4\cdot7}+...+\frac{91}{88\cdot91}=\frac{1}{3}\left(91-\frac{91}{4}+\frac{91}{4}-\frac{91}{7}+...-\frac{91}{91}\right)\)

\(=\frac{1}{3}\left(91-1\right)=\frac{1}{3}\cdot90=30\)

13 tháng 12 2018

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+..........+\frac{2}{97.100}=\frac{3}{2}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........-\frac{1}{100}\right)\)

\(=\frac{3}{2}\times\frac{99}{100}=\frac{297}{200}\)

13 tháng 12 2018

2/3( giong cai tren nha)

=2/3.99/100=198/300 nha

8 tháng 4 2017

\(A=\frac{1}{1.4}+\frac{1}{2.7}+...+\frac{1}{67.70}\)

\(3A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{67.70}\)

\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{67}-\frac{1}{70}\)

\(3A=1-\frac{1}{70}=\frac{69}{70}\)

\(A=\frac{69}{70}:3=\frac{23}{70}\)

vì \(\frac{23}{70}< 1\)

nên \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{67.70}< 1\)

8 tháng 4 2017

Vì nó bé hơn 1

26 tháng 6 2019

\(\left(1\cdot2\right)^{-1}+\left(2\cdot3\right)^{-1}+\cdot\cdot\cdot+\left(9\cdot10\right)^{-1}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

26 tháng 6 2019

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

30 tháng 4 2015

Bài này mình chắc 100%, 1 đúng nha vì ghi cực khổ lắm:
 1) Ta có:    \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}...+\frac{50-49}{49.50}\)

                                                                             \(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{50}{49.50}-\frac{49}{49.50}\)

                                                                             \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}<1\)

2) Tương tự: \(S=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

                          \(=\frac{1}{2}-\frac{1}{50}=\frac{24}{50}\)

13 tháng 8 2018

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Ta có:

\(\frac{1}{51}>\frac{1}{75}\)

\(\frac{1}{52}>\frac{1}{75}\)

......................

\(\frac{1}{75}=\frac{1}{75}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=25.\frac{1}{75}=\frac{1}{3}\)(1)

Ta có:

\(\frac{1}{76}>\frac{1}{100}\)

\(\frac{1}{77}>\frac{1}{100}\)

........................

\(\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=25.\frac{1}{100}=\frac{1}{4}\)(2)

Từ (1) và (2) ta có:

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}+\frac{1}{76}+...+\frac{1}{100}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{7}{12}\)(5)

Ta có:

\(\frac{1}{51}=\frac{1}{51}\)

\(\frac{1}{52}< \frac{1}{51}\)

...................

\(\frac{1}{75}< \frac{1}{51}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=25.\frac{1}{51}< 25.\frac{1}{50}=\frac{1}{2}\)(3)

Ta có:

\(\frac{1}{76}=\frac{1}{76}\)

\(\frac{1}{77}< \frac{1}{76}\)

...................

\(\frac{1}{100}< \frac{1}{76}\)

\(\Rightarrow\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}< \frac{1}{76}+\frac{1}{76}+...+\frac{1}{76}=25.\frac{1}{76}< 25.\frac{1}{75}=\frac{1}{3}\)(4)

Từ (3) và (4) ta có:

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}+\frac{1}{76}+...+\frac{1}{100}>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{5}{6}\)(6)

Từ (5) và (6) 

\(\Rightarrow\frac{7}{12}< \frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}< \frac{5}{6}\)

                                                            đpcm

Tham khảo nhé~

15 tháng 4 2018

Trả lời

a)

\(x^2:\frac{16}{11}=\frac{11}{4}\)

\(\Leftrightarrow x^2=\frac{11}{4}\cdot\frac{16}{11}\)

\(\Leftrightarrow x^2=\frac{16}{4}\)

\(\Leftrightarrow x^2=\left(\frac{4}{2}\right)^2\)

\(\Leftrightarrow x=\frac{4}{2}\)

Vậy x=\(\frac{4}{2}\)

b) (bạn thiếu nhóm \(\frac{1}{10\cdot13}\))

Đặt \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+\frac{1}{13\cdot16}+\frac{1}{16\cdot19}\)

\(\Rightarrow3A=3\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+\frac{1}{13\cdot16}+\frac{1}{16\cdot19}\right)\)

\(\Rightarrow3A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}+\frac{3}{16\cdot19}\)

\(\Rightarrow3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+\frac{1}{19}\)

\(\Rightarrow3A=1-\frac{1}{19}\Leftrightarrow3A=\frac{18}{19}\)

\(\Rightarrow A=\frac{18}{19}:3\Leftrightarrow A=\frac{6}{19}\)

15 tháng 4 2018

a,x​=2

b,=6/19

27 tháng 7 2016

\(A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)

\(A=1-\frac{1}{16}=\frac{15}{16}\)

27 tháng 7 2016

\(\frac{13}{16}\)

9 tháng 5 2018

câu a nè:

9 tháng 5 2018

Giúp mình nha mấy bạn