Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2
a. \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\dfrac{1}{2}-\dfrac{1}{100}\)
=\(\dfrac{49}{100}\)
a, \(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}=\dfrac{n+a-n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}\)
Vậy \(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{a}{n\left(n+a\right)}\)
b,
\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)
\(B=\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)
\(3B=\dfrac{5.3}{1.4}+\dfrac{5.3}{4.7}+...+\dfrac{5.3}{100.103}\)
\(3B=5\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)
\(3B=5\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
\(3B=5\left(1-\dfrac{1}{103}\right)=5\cdot\dfrac{102}{103}=\dfrac{510}{103}\)
\(B=\dfrac{510}{103}:3=\dfrac{170}{103}\)
\(C=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)
\(C=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)
\(2C=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\)
\(2C=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\)
\(2C=\dfrac{1}{3}-\dfrac{1}{51}=\dfrac{16}{51}\)
\(C=\dfrac{16}{51}:2=\dfrac{8}{51}\)
a, A = 1 - 1/2 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/2017 - 1/2018
A = 1 - 1/2018 = 2017/2018
b, B = 5/2 . ( 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/2016 -1/2018)
B= 5/2 . ( 1/2 - 1/ 2018 )
B = 504/1009
c, C = 1/3.6 + 1/ 6.9 + 1/ 9.12 + ... + 1/ 30.33
C= 1/3 - 1/6 + 1/6 - 1/ 9 + 1/9 - 1/12 + ... + 1/30 - 1/33
C = 1/3 - 1/33
C= 10/33
phan B mk quên nhân với 5/2
lấy 5/2 . 504/1009 = 1260/1009
a: \(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2007}-\dfrac{1}{2008}=1-\dfrac{1}{2008}=\dfrac{2007}{2008}\)
b: \(Q=\dfrac{7}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2009\cdot2011}\right)\)
\(=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)
\(=\dfrac{7}{2}\cdot\dfrac{2010}{2011}\simeq3,50\)
a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\dfrac{1}{1}+0+0+...+0-\dfrac{1}{100}\)
=\(1-\dfrac{1}{100}\)
= \(\dfrac{99}{100}\)
a) 11.2+12.3+13.4+....+199.10011.2+12.3+13.4+....+199.100
= 11−12+12−13+13−14+....+199−110011−12+12−13+13−14+....+199−1100
=11+0+0+...+0−110011+0+0+...+0−1100
=1−11001−1100
= 99100
A = \(\dfrac{9}{1.2}\)+ \(\dfrac{9}{2.3}\)+\(\dfrac{9}{3.4}\)+......+\(\dfrac{99}{99.100}\)
A = 9( \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.......+\(\dfrac{1}{99.100}\))
A = 9( 1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+........+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\))
A = 9 ( 1 - \(\dfrac{1}{100}\))
A = 9 . \(\dfrac{99}{100}\)
A = \(\dfrac{891}{100}\)
\(A=\dfrac{9}{1\cdot2}+\dfrac{9}{2\cdot3}+\dfrac{9}{3\cdot4}+...+\dfrac{9}{98\cdot99}+\dfrac{9}{99\cdot100}\)
\(=9\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)
\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=9\left(1-\dfrac{1}{100}\right)\)
\(=9\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)
\(=9\cdot\dfrac{99}{100}\)
\(=\dfrac{891}{100}\)
Bài 1:
a) \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
Quy đồng \(VP\) ta được:
\(VP=\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow VP=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)
\(\Rightarrow VP=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
\(\Rightarrow VP=VT\)
Vậy \(\forall n\in Z,n>0\Rightarrow\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (Đpcm)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
Bài 3:
a) \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
b) A=\(\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}+\dfrac{1}{5}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{8}+\dfrac{1}{8}.\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{9}\)
\(=\dfrac{7}{18}\)
B=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
\(=\dfrac{1}{5}-\dfrac{1}{12}\)
\(=\dfrac{7}{60}\)
\(a,\dfrac{3}{4}-1\dfrac{1}{2}+0,5:\dfrac{5}{12}.\)
\(=\dfrac{3}{4}-\dfrac{3}{2}+\dfrac{1}{2}:\dfrac{5}{12}.\)
\(=\dfrac{3}{4}-\dfrac{6}{4}+\dfrac{1}{2}.\dfrac{12}{5}.\)
\(=-\dfrac{3}{4}+\dfrac{12}{10}.\)
\(=-\dfrac{3}{4}+\dfrac{6}{5}.\)
\(=-\dfrac{15}{20}+\dfrac{24}{20}=\dfrac{9}{20}.\)
Vậy.....
\(b,\left(-2\right)^2-1\dfrac{5}{27}.\left(-\dfrac{3}{2}\right)^3.\)
\(=4-1\dfrac{5}{27}.\left(-\dfrac{27}{8}\right).\)
\(=4-\dfrac{32}{27}.\left(-\dfrac{27}{8}\right).\)
\(=4-\left(-4\right).\)
\(=4+4=8.\)
Vậy.....
\(c,\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}.\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}.\)
\(=\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{99}-\dfrac{1}{99}\right)-\dfrac{1}{100}.\)
\(=\dfrac{1}{2}+0+0+...+0-\dfrac{1}{100}.\)
\(=\dfrac{1}{2}-\dfrac{1}{100}.\)
\(=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}.\)
Vậy.....
a) $A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}$
$=>A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$
$=>A=(1+\dfrac{1}{3}+...+\dfrac{1}{99})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100})$
$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}.2)$
$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100})-(1+\dfrac{1}{2}+...+\dfrac{1}{50})$
$=>A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}$
b) Ta có : $A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$
$=>A=(1-\dfrac{1}{2}+\dfrac{1}{3})-(\dfrac{1}{4}-\dfrac{1}{5})-...-(\dfrac{1}{98}-\dfrac{1}{99})-\dfrac{1}{100}$
$=>A<1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}$
Ta có: \(\dfrac{1}{a}-\dfrac{1}{a+1}=\dfrac{a+1}{a\left(a+1\right)}-\dfrac{a}{a\left(a+1\right)}\)
\(=\dfrac{a+1-a}{a\left(a+1\right)}\)
\(=\dfrac{1}{a\left(a+1\right)}\) (đpcm)
Ta được:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+...-\dfrac{1}{100}\) \(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)