\(f_x=x^2+\left(x-1\right)^2\)không có nghiệm 
nói cách làm nữ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2016

(x-1)^2 >=0

=> x^2 >0

=> x^2 + (x-1)^2 >0

=> vô nghiệm

19 tháng 4 2016

cho tam giác ABC vuông ở A có AB =6 , AC= 8 , phân giác BD . kể DE vuông góc với BC ( E thuộc BC ) . Gọi F là giao điểm của BA và ED
a, tính độ dài cạnh BC ?
b, Chứng Minh DF = DC
c, chứng minh D là trực tâm của tam giác BFC
nói cách làm nữa nha 

a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)

\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)

\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)

\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)

b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)

\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm

8 tháng 8 2021

Ta có: 

x^4+2x^3+2x^2+1

=x^2(x^2+2x+2)+1

Ta thấy x^2(x^2+2x+2)> hoặc =0 nên 

x^2(x^2+2x+2)+1>0 nên ko có nghiệm

Chúc học tốt

5 tháng 5 2018

bạn trả lời vs thầy là :

" bài này nhìn qua cx biết nó > 0 oy, nên vô nghiệm "

chỉ có những thằng thiểu năng mới hỏi câu kiểu này

5 tháng 5 2018

a, \(x^2+1\)

Có \(x^2\ge0\forall x\)=>x^2+1 >0

vậy đa thức vô nghiệm

b,(2x+1)^2+3

 có (2x+1)^2\(\ge\)0 với mọi x

 =>(2x+1)^2+3>0 

=>đa thức này không có nghiệm

31 tháng 3 2020

Ta có: M(x)=x4+2x2+1

1. Thay x=1 vào M(x) ta được: M(1)=1+2.1+1=4

Thay x=-1 vào M(x) ta được: M(-1)=(-1)2+2.(-1)2+1=4

2. Đặt t=x2 (t\(\ge\)0)

Ta được: M(t)=t2+2t+1=(t+1)2=0

\(\Leftrightarrow t=-1\) (KTM)

\(\Rightarrow\) M(x) vô nghiệm (dpcm)

Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha

19 tháng 4 2017

a) Thu gọn và sắp xếp:

M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1

= x4 + 2x2 +1

b)M(1) = 14 + 2.12 + 1 = 4

M(–1) = (–1)4 + 2(–1)2 + 1 = 4

Ta có M(x)=\(x^4+2x^2+1\)

\(x^4\)\(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x

Nên \(x^4+2x^2+1>0\)

Tức là M(x)\(\ne0\) với mọi x

Vậy đa thức trên không có nghiệm.

19 tháng 4 2017

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4x4+5x3x34x3+3x2x2+1M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1=x4+2x2+1

b) M(1)=14+2.12+1=4M(1)=14+2.12+1=4

M(1)=(1)4+2.(1)2+1=4M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.

15 tháng 10 2018

ko  biet ban 

15 tháng 10 2018

\(a)\)\(5x^3-7x^2+4x-2=0\)

\(\Leftrightarrow\)\(\left(5x^3-5x^2\right)-\left(2x^2-4x+2\right)=0\)

\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(\sqrt{2}x-\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\)\(5x^2\left(x-1\right)-2\left(x-1\right)^2=0\)

\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(2x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(5x^2-2x+2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\5x^2-2x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\5x^2-2x+2=0\end{cases}}}\)

Vậy \(x=1\) là một trong các nghiệm của đa thức \(f\left(x\right)\)

Hok tốt nhé eiu :>