Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*thu gọn đa thức f(x)
f(x)= 4x2+ 5x3- 3x2+ 4x4- x3+ 1- 4x3- 4x4
=4x4- 4x4+ 5x3- x3- 4x3+ 4x2- 3x2 +1
=x2+ 1
Chứng tỏ f(x) không có nghiệm
f(x)= x2+ 1
Ta có: x2\(\ge\)0 ( với mọi x\(\in\)R)
1 > 0
nên x2+ 1 > 0
mà x2 + 1 = 0 ( vô lí)
=> f(x) vô nghiệm
Ta có :
\(f\left(x\right)=4x^2+5x^3-3x^2+4x^4-x^3+1-4x^3-4x^4\)
\(f\left(x\right)=\left(4x^2-3x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-4x^4\right)+1\)
\(f\left(x\right)=x^2+1\)
Lại có :
\(x^2\ge0\)
\(\Rightarrow\)\(f\left(x\right)=x^2+1\ge0+1=1>0\)
Vậy đa thức \(f\left(x\right)\) không có nghiệm ( vì nó luôn lớn hơn 0 )
Chúc bạn học tốt ~
a)\(f\left(x\right)=\dfrac{1}{3}x^4+3x^2+1\)
\(f\left(x\right)=\dfrac{1}{3}\left(x^4+9x^2+3\right)\)
\(f\left(x\right)=\dfrac{1}{3}\left[x^2\left(x^2+9\right)+3\right]\)
Vì \(x^2\left(x^2+9\right)+3>0\)
\(\Rightarrow f\left(x\right)>0\)
=>f(x) vô nghiệm=>đpcm
Câu 1:
a, Ta có:
\(H\left(x\right)=0\Rightarrow4x^2+x=0\Rightarrow x.\left(4x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\4x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Câu b bài 1 có nghiệm nha!
Câu 2:
Thay x=-1 vào đa thức ta được:
\(\left(-1\right)^{2008}-\left(-1\right)^{2007}+1=1-\left(-1\right)+1=3\)
Chúc bạn học tốt!!!
Vì \(H\left(x\right)=2x^2+1\ge1>0\)
Nên đa thức trên vô nghiệm
Ta có x\(^{2006}\)\(\ge\)0
x\(^{2004}\)\(\ge\)0
Nên x\(^{2006}\)+x\(^{2004}\)+7>0
suy ra đa thức A vô nghiệm