Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: n = 2k (k thuộc N):
Ta có: (n + 20122013)(n + 20132012) = (2k + 20122013)(2k + 20132012).
Vì: (2k + 20122013) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2 (1)
TH2: n = 2k + 1 (k thuộc N):
Ta có: (n + 20122013)(n + 20132012) = (2k + 1 + 20122013)(2k + 1 + 20132012).
Vì: (2k + 1 + 20132012) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2 (2)
Từ (1) và (2) suy ra: (n + 20122013)(n + 20132012) ⋮ 2.
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
CHòi oi bố đăng nhiều thế con die
a, có
b, ko
c, XÉT 3stn liên tiếp: a,a+1,a+2 (a E N) a có dạng: 3k;3k+1;3k+2 (k E N)
d, tương tự c
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
Xét dãy 2014 số 2012;20122012;...;20122012...2012(2014 bộ)
Vì có 2014 số mà khi chia cho 2013 chỉ có thể nhận 2013 số dư nên có 2 số trong dãy cùng số dư khi chia cho 2013
Giả sử 2 số đó là 20122012...2012(n bộ;0<n<2015) và 20122012...2012(m bộ;0<m<2015) với n>m
Khi đó 20122012...2012-20122012...2012 chia hết cho 2013
n m
<=>20122012...2012 00...0 chia hết cho 2013
n-m 4m
<=>20122012...2012*(10^(4m)) chia hết cho 2013
Mà (10^(4m);2013)=1
=>20122012...2012 chia hết cho 2013 (đpcm)