Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biết làm câu số 3
Chứng tỏ rằng tổng bốn số tự nhiên liên tiếp là một số không chia hết cho 4:
Giải
4 = 22
=> Số chia hết cho 4 phải chia hết cho 2 và số chia hết cho 2 có tận cùng là: 0 , 2 , 4 , 6 , 8
Gọi 4 số tự nhiên lần lượt: a , b , c ,d
Ta có:
a + b + c + d = ..............................
Tới đây bí rồi! Gợi ý thôi! Đừng trách mình nhé
Mình làm mấy câu trước nhé!
\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
\(x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)=1\)
\(\Rightarrow x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)=1\)
\(\Rightarrow x-\left(\frac{1}{1}-\frac{1}{10}\right)=1\)
\(\Rightarrow x-\frac{9}{10}=1\Leftrightarrow x=1+\frac{9}{10}=\frac{19}{10}\)
\(5,\left(x\cdot0,5-\frac{3}{7}\right):\frac{1}{2}=1\frac{1}{7}\)
\(\Leftrightarrow x\cdot0,5:\frac{1}{2}-\frac{3}{7}:\frac{1}{2}=1\frac{1}{7}\)
\(\Leftrightarrow x-\frac{6}{7}=\frac{8}{7}\)
\(\Leftrightarrow x=2\)
\(6,x\cdot1,75=1\frac{3}{10}+45\%\)
\(\Leftrightarrow x\cdot\frac{7}{4}=\frac{13}{10}+\frac{9}{20}\)
\(\Leftrightarrow x\cdot\frac{7}{4}=\frac{7}{4}\)
\(\Leftrightarrow x=1\)
\(7,\frac{5-x}{15}+\frac{5}{12}-\frac{1}{8}=\frac{3}{8}\)
\(\Leftrightarrow\frac{5-x}{15}=\frac{3}{8}-\frac{5}{12}+\frac{1}{8}\)
\(\Leftrightarrow\frac{5-x}{15}=\frac{1}{12}\)
\(\Leftrightarrow60-12x=15\)
\(\Leftrightarrow12x=45\)
\(\Leftrightarrow x=\frac{15}{4}\)
\(8,\left|x-\frac{25}{33}\right|-\frac{3}{11}=\frac{2}{3}\)
\(\Leftrightarrow\left|\frac{x-25}{33}\right|=\frac{31}{33}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{25}{33}=\frac{31}{33}\\x-\frac{25}{33}=-\frac{31}{33}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{56}{33}\\x=-\frac{2}{11}\end{cases}}\)
\(9,-\frac{9}{8}+\frac{-3}{8}\cdot x=-\frac{1}{8}\)
\(\Leftrightarrow\frac{-9}{8}+\frac{-3}{8}\cdot x+\frac{1}{8}=0\)
\(\Leftrightarrow-1-\frac{3}{8}x=0\)
\(\Leftrightarrow\frac{3}{8}x=-1\)
\(\Rightarrow x=-\frac{8}{3}\)
Mik lười quá bạn tham khảo câu 3 tại đây nhé:
Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath
\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)
\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)
\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)
\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\)
b) gọi dãy là A ta có:
\(\frac{1}{2^2}\)<\(\frac{1}{1.2}\)
\(\frac{1}{3^2}\)<\(\frac{1}{2.3}\)
.
............
...........
\(\frac{1}{100^2}\)<\(\frac{1}{99.100}\)
đặt D=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+.......+\(\frac{1}{99.100}\)
D=1-1/2+1/2-1/3+.......+1/99-1/100
D=1-1/100=99/100
vì A <D => A<1
K NHA
a) \(\frac{13}{26}-\frac{1}{3}-\frac{1}{2}+\frac{7}{21}\)
\(=\frac{1}{2}-\frac{1}{3}-\frac{1}{2}+\frac{1}{3}\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}\)
\(=0+0\)
\(=0\)
b) \(\left(\frac{-5}{12}+\frac{6}{11}\right)+\left(\frac{7}{17}+\frac{5}{17}+\frac{5}{12}\right)\)
\(=\frac{-5}{12}+\frac{6}{11}+\frac{7}{17}+\frac{5}{17}+\frac{5}{12}\)
\(=\left(\frac{-5}{12}+\frac{5}{12}\right)+\left(\frac{7}{17}+\frac{5}{17}\right)+\frac{6}{11}\)
\(=0+\frac{12}{17}+\frac{6}{11}\)
\(=\frac{132}{187}+\frac{102}{187}\)
\(=\frac{234}{187}\)
c) \(\left(\frac{13}{5}+\frac{7}{16}\right)-\left(\frac{11}{16}-\frac{12}{10}\right)\)
\(=\left(\frac{13}{5}+\frac{7}{16}\right)-\left(\frac{11}{16}-\frac{6}{5}\right)\)
\(=\frac{13}{5}+\frac{7}{16}-\frac{11}{16}+\frac{6}{5}\)
\(=\left(\frac{13}{5}+\frac{6}{5}\right)+\left(\frac{7}{16}-\frac{11}{16}\right)\)
\(=\frac{19}{5}+\left(\frac{-4}{16}\right)\)
\(=\frac{19}{5}-\frac{1}{4}\)
\(=\frac{76}{20}-\frac{5}{20}\)
\(=\frac{71}{20}\)
d) \(-\left(\frac{3}{10}-\frac{6}{11}\right)-\left(\frac{21}{30}-\frac{5}{11}\right)\)
\(=-\left(\frac{3}{10}-\frac{6}{11}\right)-\left(\frac{7}{10}-\frac{5}{11}\right)\)
\(=-\frac{3}{10}+\frac{6}{11}-\frac{7}{10}+\frac{5}{11}\)
\(=
\left(-\frac{3}{10}-\frac{7}{10}\right)+\left(\frac{6}{11}+\frac{5}{11}\right)\)
\(=\frac{-10}{10}+\frac{11}{11}\)
\(=-1+1\)
\(=0\)
câu a
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản